• Title/Summary/Keyword: reinforced concrete optimization

Search Result 158, Processing Time 0.024 seconds

A novel harmony search based optimization of reinforced concrete biaxially loaded columns

  • Nigdeli, Sinan Melih;Bekdas, Gebrail;Kim, Sanghun;Geem, Zong Woo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1097-1109
    • /
    • 2015
  • A novel optimization approach for reinforced concrete (RC) biaxially loaded columns is proposed. Since there are several design constraints and influences, a new computation methodology using iterative analyses for several stages is proposed. In the proposed methodology random iterations are combined with music inspired metaheuristic algorithm called harmony search by modifying the classical rules of the employed algorithm for the problem. Differently from previous approaches, a detailed and practical optimum reinforcement design is done in addition to optimization of dimensions. The main objective of the optimization is the total material cost and the optimization is important for RC members since steel and concrete are very different materials in cost and properties. The methodology was applied for 12 cases of flexural moment combinations. Also, the optimum results are found by using 3 different axial forces for all cases. According to the results, the proposed method is effective to find a detailed optimum result with different number of bars and various sizes which can be only found by 2000 trial of an engineer. Thus, the cost economy is provided by using optimum bars with different sizes.

A Study on the Reinforcement of Reinforced Concrete using Evolutionary Structural Optimization (점진적 구조 최적화 기법을 응용한 철근콘크리트 부재의 배근)

  • 윤성수;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • Due to the fact that the design of a reinforced concrete structure changes in accordance with its shape and assigned load, total automation of the design system has not been achieved. For instance, since there is no general rule about setting up reinforcing steel quantity and arrangement location, it is simply not feasible to automatically decide the reinforcing arrangement location. In this study, the ESO(evolutionary structural optimization) technique and its related issues will be discussed. The ESO techniques is determined the reasonable load path which is traveling of load between in-flow and out-flow at a concrete structure using numerical analysis. And the results applied to the steel arrangement in reinforced concrete structures. The optimal algorithm, which determines the terminal criteria during ESO process, has been updated by using the obtained results. And the load path within the member has been determined automatically.

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga;Greco, Marcelo;Lanes, Ricardo Morais;Almeida, Valerio Silva
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.141-156
    • /
    • 2016
  • The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.

The Optimum Design of Reinforced Concrete Structures Based on the LRFD (하중일- 저항계수 설계법에 의한 철근콘크리트 구조물 최적설계)

  • 구봉근;강종수;김우식;김태봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.63-72
    • /
    • 1990
  • In this study, an optimization design of reinforced concrete structures is performed by using the structural optimization techniques based on the LRFD criteria. The target reliability index is estimated by the optimal reliability index considering the expected cost which is taken as a sum of the structural cost and the expected costs due to failure of the structure. The load and resistance factors calculated by using level I reliability theory with the target reliability index are compared for each load combination (D+L, D+L+w). The results of this study show that the resistance factors are ${\phi}_{M}$=0.90, ${\phi}_{V}$==0.70, ${\phi}_{C}$==0.65 and the load factors are 1.20D + 1.70L, 1.07L + 0.07L + 1.10W. The optimization techinques used to this study are S.L.P. The optimization design based on the LRFD criteria is more economical and rational than other criteria.

Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method - (저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.