• Title/Summary/Keyword: reinforced concrete members

Search Result 876, Processing Time 0.025 seconds

An Analytical Study on Ductility of Reinforced Concrete Columns under Tension Controlled Region (인장지배영역에서의 철근콘크리드 기둥의 연성에 관한 해석적 연구)

  • 손혁수;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.527-532
    • /
    • 1997
  • Design strength of structural members could be determined by applying a strength reduction factor to nominal strength. At the beginning point of the transition region for the strength reduction factor, P=0.1$\sigma$$_{ck}A_g$, only sectional area and concrete strength are adopted as the variables of P=0.1$\sigma$$_{ck}A_g$. Therefore, P=0.1$\sigma$$_{ck}A_g$ is the empirically adopted which does not consider steel ratio, steel yielding stress, and steel arrangement. So, this research was perpormed the computer program for the analysis of axial force-moment-curvature relationship of reinforced concrete columns by sectional behaviour nonlinear analysis using a concrete compressive stress-strain curve, in order to investigate the ductility of reinforced concrete columns. As a result, ductility indicies of axial force, P=0.1$\sigma$$_{ck}A_g$, represented the lack of consistency of the indicies value for the various sections.

  • PDF

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

An Effect Analysis of Subtracting Rebar Volumes in Reinforced Concrete Members on Quantity Take-off (콘크리트 내 철근 부피 공제가 물량산출에 미치는 영향)

  • Kang, Jong-Min;Kim, Seong-Ah;Chin, Sang-Yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.6
    • /
    • pp.24-32
    • /
    • 2012
  • Reinforced Concrete is the most dominant structure type for buildings in South Korea. Reinforced Concrete is one of materials having the most cost and quantity at construction projects. It is important to manage concrete quantity so that the total project cost is not affected due to underestimate or overestimate of its quantity. Generally the concrete quantity is taken-off based on the volume of the space inside forms without subtracting volumes of rebar embedded, which cannot be considered to make quite accurate results. Resource waste and extra cost due to over or under estimate of quantity occur since they cannot estimate accurate quantity at practices. Therefore, the objective of this paper is to analyze the effect of the volume for rebars embedded in reinforced concrete members. By comparing the quantity based on the existing method with the one from BIM data, it was found that about 1~2% of quantity discrepancy was observed while the typical concrete waste rate is 1 % at the current practice.

Shear Capacity Determination of Steel Fiber Reinforced RC Columns (강섬유 보강 RC 기둥의 전단능력 산정)

  • 이현호;장극관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.891-896
    • /
    • 2001
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members, notably shear strength and ductility, In this study, shear capacity evaluation method according to steel fiber contents was proposed from the literature surveys and member tests. For this, previously proposed five shear strength equation were examined and evaluated by maximum shear strength and shear capacity ratio. From the parametric study and regression analysis, following conclusion can be made; the maximum shear strength of steel fiber reinforced column will be estimated by relative shear capacity ratio.

  • PDF

Inelastic Analysis of RC Members Using Repair and Retrofitted Element (보수 및 보강요소를 이용한 RC 부재의 비탄성 해석)

  • Lee, Do-Hyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.301-310
    • /
    • 2006
  • In this short paper, an elasto-plastic repair and retrofit element is developed for the investigation of the seismic performance of damaged reinforced concrete members. The developed element is capable of reflecting the increased characteristics due to both repair and retrofitting for degraded strength and stiffness of the members. The element having both birth and death time can freely be activated within the user-defined time intervals during static and dynamic time-history analysis. Comparative studies are conducted for reinforced concrete members being repaired and retrofitted. Analytical predictions including the developed element display reasonable correlation with experimental results. In short, it is concluded that the developed element is capable of providing salient features for the healthy assessment of seismic performance of RC members being repaired and retrofitted.

  • PDF

Cracking Behavior of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 균열거동)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • This paper presents the experimental results concentrically reinforced concrete tension members and compares cracking behavior of amorphous steel fiber and normal steel fiber reinforced concrete members. Two kind of steel fibers were included as a major experimental parameter together with the six cover thickness to bar diameter ratio ($c/d_b$). The presence of amorphous steel fibers effectively controlled the splitting cracks initation and propagation. In the amorphous steel fiber reinforced specimens, no splitting cracks were observed that becomes higher with cover thickness to bar diameter ratio is 2.0. Crack spacing of the each specimens reinforced with amorphous steel fibers and normal steel fibers becomes larger with the increase in cover thickness, and also measured maximum and average crack spacing are significantly smaller than current design code provision. Based on the measured crack spacings, a relationships for predicting the crack spacing is proposed using the measured average crack spacing in amorphous steel fiber reinforced concrete tension members.

Effect of Concrete on the Tension Behavior of RC Members (콘크리트가 RC 인장부재의 인장거동에 미치는 영향)

  • Hong, Chang-Woo;Kim, Nam-Yun;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.145-151
    • /
    • 1997
  • This paper presents evaluation results of the tensile behavior of reinforced high strength concrete. The effects of different sizes of reinforcing bar, ranging from D22 to D29, on the formation of cracks was investigated. Two different strength concretes, $270kg/cm^2$ and $550kg/cm^2$, were used in the specimens to investigate the influence if concrete strength on tension stiffening. In the present investigation a method was developed to obtain reliable load-deformation behavior in tension. The experimental results show that (1)high-strength concrete members exhibited larger amounts of tension stiffening than the companion normal-strength concrete members, (2) as the bar diameter increases, the beneficial influence of high-strength concrete on tension stiffening is reduced.

  • PDF

Cyclic behavior of FRP - crumb rubber concrete - steel double skin tubular columns and beams

  • Li, Danda;Hassanli, Reza;Su, Yue;Zhuge, Yan;Ma, Xing
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.649-661
    • /
    • 2021
  • This paper presents experimental and analytical studies to understand the behavior of crumb rubber concrete (CRC)-filled fiber reinforced polymer (FRP) and steel tube double skin column (DSC) and beam (DSB) members under cyclic loading. The main test variable was the percentage of rubber which ranged from 0 to 40%. For column members, different heights corresponding to different aspect ratios were examined to understand the to understand the effect of DSCs' slenderness on the cyclic response of the columns. the. The behavior of the specimens in terms of failure mode, strain development, energy dissipation, load-displacement response were presented and compared. The ability of the current provisions of the Australian codes to predict the capacity of such double skin members was also evaluated based on the test results. This study concluded that the reduction in the concrete strength was more severe at the material level compared to structural level. Also, as the load changed from axial compression in columns to pure moment in beams the negative effect of rubber percentage on the strength became less significant.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

P-M interaction curve for reinforced concrete columns exposed to elevated temperature

  • Kang, Hyun;Cheon, Na-Rae;Lee, Deuck Hang;Lee, Jungmin;Kim, Kang Su;Kim, Heung-Youl
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • The strength and deformational capacity of slender reinforced concrete (RC) columns greatly rely on their slenderness ratios, while an additional secondary moment (i.e., the $P-{\delta}$ effect) can be induced especially when the RC column members are exposed to fire. To evaluate the fire-resisting performances of RC columns, this study proposed an axial force-flexural moment (i.e., P-M) interaction curve model, which can reflect the fire-induced slenderness effects and the nonlinearity of building materials considering the level of stress and the magnitude of temperature. The P-M interaction model proposed in this study was verified in detail by comparing with the fire test results of RC column specimens reported in literature. The verification results showed that the proposed model can properly evaluate the fire-resisting performances of RC column members.