• Title/Summary/Keyword: reinforced concrete floor

Search Result 183, Processing Time 0.022 seconds

A Study on the Improvement of the Floor Impact Sound Insulation Performance in Wall Slab Type Apartment (벽식구조 공동주택의 바닥충격음 개선에 대한 연구)

  • Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2012
  • Floor impact sound has been most annoying for years among the noises which are produced in apartment. This study aims to analyze the improvement of floor impact sound by comparing the results of the test which was carried out for the wall slab type apartment and moment frame apartment, and also for the effect of advanced vibration isolation layer. Moment frame structure that main structure consists of column and slab has shown better performance for the heavyweight impact sound comparing with wall slab type structure which is general type in Korea. Stiffness of floor system was raised by reinforcing the stiffness of vibration isolation layer, and it was analyzed how much the floor impact sound performance was improved. The result showed that the reinforced floor had better performance than the existing floor system that uses lightweight porous concrete as vibration isolation material. In addition, a system used wire mesh in mortar showed improvement of floor impact sound than a system without wire mesh, and better performance for the frequency bands lower than 160 Hz which causes floor impact problem in wall slab type apartment.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao;Guanqi Lan;Hua Huang;Huiping Liu;Chenghua Li
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.289-304
    • /
    • 2024
  • The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

Floor Impact Noise Measurement and Evaluation Method Using Impact Ball (임팩트 볼을 활용한 바닥충격음 측정 및 평가)

  • Jeon, Jin-Yong;Jeong, Jeong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1160-1168
    • /
    • 2005
  • Floor impact noise isolation performance of reinforced concrete floors was investigated through new measurement method using impact bail. Strong impact force in Bow frequency band below 63 Hz of bang machine is not similar to human impact source and causes some problem in evaluating heavy-weight Impact noise but heavy-weight impact noise measurement and evaluation using impact ball which is very similar to human impact is more reliable than bang machine. Correction value on the background noise and sensitivity of residents should be considered on the floor impact noise evaluation classes.

A Effects of applying the noise reduction method between existing buildings (기존 건축물 층간소음 저감공법 적용 효과 분석)

  • Song, Tae-Hyeob;Jeon, Chan-Soo;Kim, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.249-250
    • /
    • 2018
  • To control the floor noise generated in the apartment building, a method of reinforcing the floor at the floor is applied. However, since existing buildings are difficult to reinforce upper generations, the ceilings of lower generations should be reinforced. The purpose of this study is to analyze the reduction effect by measuring the impact noise after reinforcing the floor soundproofing material on the ceiling of the existing building. In order to ensure the economical efficiency and flame retardancy of the products used as building interior materials, the existing polyurethane foam was impregnated with mineral to prepare test specimens and attached to the concrete slab surface. As a result, it was shown that heavy impact sound can reduce 2dB~5dB and light impact sound can reduce 4~8dB.

  • PDF

Cost optimization of composite floor trusses

  • Klansek, Uros;Silih, Simon;Kravanja, Stojan
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.435-457
    • /
    • 2006
  • The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

An Experimental Study on Seismic Reinforcement of Dry Type Buckling Restrained Braces Laterally Using Buckling Restrained Rings (좌굴방지링으로 횡지지된 건식형 좌굴방지가새 내진보강에 대한 실험적 연구)

  • Lee, Seon Jae;Moon, Hee Suk;Park, Byung Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2022
  • This study is conducted to verify the seismic reinforcement effects of internally inserted buckling-restrained braces supported laterally by buckling-restrained rings for the seismic reinforcement of existing reinforced concrete buildings with non-seismic details. First, to evaluate the performance of KDS, the hysteretic characteristics of buckling-restrained braces are verified, and it is discovered that they satisfy the conformance criteria of the displacement-dependent damping device. Three full-scale, two-story reinforced concrete framework specimens are prepared to verify the seismic reinforcement effects, and the proposed buckling-restrained braces are bolstered with single diagonal and V-shaped braces to be compared with non-reinforced specimens. By performing a comparison with non-reinforced specimens that present intensive shear cracks at the bottom of first-floor columns, it is revealed that the maximum load and energy dissipation of specimens reinforced with the proposed buckling restrained braces, in which the structural damage extends evenly throughout the system, are approximately 4 and 6.2 times higher, respectively, which proves the effectiveness of the proposed seismic reinforcement method.

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

Numerical study on RC flat plates subjected to combined axial and transverse load

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.137-150
    • /
    • 1999
  • This paper presents a numerical study on the flat plates in deep basements, subjected to floor load and in-plane compressive load due to soil and hydraulic lateral pressure. For nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. The validity of the numerical model is established by comparison with existing experiments performed on plates simply supported on four edges. The flat plates to be studied are designed according to the Direct Design Method in ACI 318-95. Through numerical study on the effects of different load combinations and loading sequence, the load condition that governs the strength of the flat plates is determined. For plates under the governing load condition, parametric studies are performed to investigate the strength variations with reinforcement ratio, aspect ratio, concrete strength, and slenderness ratio. Based on the numerical results, the floor load magnification factor is proposed.

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.