• Title/Summary/Keyword: reinforced columns

Search Result 1,121, Processing Time 0.033 seconds

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Seismic response of NFRP reinforced RC frame with shape memory alloy components

  • Varkani, Mohamad Motalebi;Bidgoli, Mahmood Rabani;Mazaheri, Hamid
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.285-295
    • /
    • 2022
  • Creation of plastic deformation under seismic loads, is one of the most serious subjects in RC structures with steel bars which reduces the life threatening risks and increases dissipation of energy. Shape memory alloy (SMA) is one of the best choice for the relocating plastic hinges. In a challenge to study the seismic response of concrete moment resisting frame (MRF), this article investigates numerically a new type of concrete frames with nano fiber reinforced polymer (NFRP) and shape memory alloy (SMA) hinges, simultaneously. The NFRP layer is containing carbon nanofibers with agglomeration based on Mori-Tanaka model. The tangential shear deformation (TASDT) is applied for modelling of the structure and the continuity boundary conditions are used for coupling of the motion equations. In SMA connections between beam and columns, since there is phase transformation, hence, the motion equations of the structure are coupled with kinetic equations of phase transformation. The Hernandez-Lagoudas theory is applied for demonstrating of pseudoelastic characteristics of SMA. The corresponding motion equations are solved by differential cubature (DC) and Newmark methods in order to obtain the peak ground acceleration (PGA) and residual drift ratio for MRF-2%. The main impact of this paper is to present the influences of the volume percent and agglomeration of nanofibers, thickness and length of the concrete frame, SMA material and NFRP layer on the PGA and drift ratio. The numerical results revealed that the with increasing the volume percent of nanofibers, the PGA is enhanced and the residual drift ratio is reduced. It is also worth to mention that PGA of concrete frame with NFRP layer containing 2% nanofibers is approximately equal to the concrete frame with steel bars.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

Evaluation of Stress Distribution Ratio According to Clay Ground Condition and Stone Column Characteristics (점토지반 조건 및 쇄석말뚝 특성에 따른 응력분담비 산정)

  • Kim, Dong-Eun;Park, Hyun-Il;Lee, Seung-Rae;You, Sang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.35-41
    • /
    • 2008
  • Stone columns, one of the soft ground improvement techniques, are being used for not only accelerating consolidation but also increasing bearing capacity of soft grounds. In this study, in order to observe the stress distribution characteristics which are one of the important factors to estimate the settlement reduction of the soft ground, lab-scale experiments were performed in stone column reinforced clay ground. The stress distribution ratio of stone column decreased with the lapse of time after surcharge loading but increased as the stiffness of clay deposit increases. It shows that the modified Baumann and Bauer's solution, which is able to easily predict the stress distribution ratio of stone column reinforced soft ground, exhibits reasonable agreement with the measured data.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Study on the Performance of New Shear Resistance Connecting Structure of Precast Member (프리캐스트 부재의 새로운 전단저항 연결체의 성능에 관한 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Kim, Seong-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.147-154
    • /
    • 2008
  • The purpose of this study is to critically evaluate the structural performance of an innovative new shear resistance connecting structure of precast member. Joints such as shear resistance connecting structure require special attention when designing and constructing precast segmental structures. An experimental and analytical study was conducted to quantify performance measures and examine one aspect of detailing for developed shear resistance connecting structure. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A joint element is used to predict the inelastic behavior of the joints between segmental members. Future work by the authors will do a model test of precast segmental prestressed concrete bridge columns with this shear resistance connecting structure, and examined both the structural behavior and seismic performance.

A Study on Automated Reinforcement Detailing for Reinforced Concrete Structures Using BIM (BIM 기반 철근콘크리트 구조물의 자동 배근 모델 생성)

  • Park, U-Yeol;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Recent advancements in Building Information Modeling(BIM) have significantly impacted the construction industry, driving competitiveness and innovation. However, rebar construction, a critical component influencing project quality and cost, has lagged behind in BIM adoption. Traditional methods relying heavily on 2D drawings for rebar detailing have hindered efficiency and introduced potential errors. This paper presents a novel system designed to automate the detailed modeling of rebar, thereby promoting BIM integration within rebar construction and optimizing construction management processes. The system leverages confirmed structural drawings from the post-structural design phase to automatically generate intricate rebar models for columns and beams. To ensure adherence to domestic structural design standards, the system is developed using C# programming language and the Revit API. By automating rebar modeling, this system aims to minimize human error, reduce labor-intensive tasks, and enhance overall rebar construction efficiency through the effective utilization of generated rebar model data.

Strengthening Efficiency for the Various Corner Shapes of RC Member confined with Continuous Fiber Sheets (연속섬유 시트로 보강된 RC 부재의 모서리 형상에 따른 보강 효율에 관한 연구)

  • Ko, Hune-Bum;Lee, Jin-Seop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • Recently, fiber reinforced polymers(FRP) composite materials are used extensively in the rehabilitation of concrete structural members. A main application is to wrap beams and columns using the continuous fibers sheets to improve their strength and ductility. The corner chamfering affects significantly the performance of the continuous fibers sheets, and could lead to environmental problem with waste and dust. The main purpose of this paper is to verify the effect of corner conditions on the strength of the continuous fiber sheets, and to introduce new attached components which can avoid environmental problem. A total of 15 specimens were tested and carefully checked for three types of continuous fiber sheets(carbon, glass, and aramid) and three types of corner conditions(non-chamfering, chamfering, and device attaching). It is proved that the devices proposed in this research have some capabilities to use for RC member. But additional research will be needed for commercializing.

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Remaining service life estimation of reinforced concrete buildings based on fuzzy approach

  • Cho, Hae-Chang;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kim, Ki-Hyun;Monteiro, Paulo J.M.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.879-902
    • /
    • 2015
  • The remaining service life (RSL) of buildings has been an important issue in the field of building and facility management, and its development is also one of the essential factors for achieving sustainable infrastructure. Since the estimation of RSL of buildings is heavily affected by the subjectivity of individual inspector or engineer, much effort has been placed in the development of a rational method that can estimate the RSL of existing buildings more quantitatively using objective measurement indices. Various uncertain factors contribute to the deterioration of the structural performance of buildings, and most of the common building structures are constructed not with a single structural member but with various types of structural components (e.g., beams, slabs, and columns) in multistory floors. Most existing RSL estimation methods, however, consider only an individual factor. In this study, an estimation method for RSL of concrete buildings is presented by utilizing a fuzzy theory to consider the effects of multiple influencing factors on the deterioration of durability (e.g., concrete carbonation, chloride attack, sulfate attack), as well as the current structural condition (or damage level) of buildings.