• Title/Summary/Keyword: reinforced bridge

Search Result 728, Processing Time 0.022 seconds

Local Deflection and Fatigue Characteristics of ′Delta Deck′ Composite Bridge Deck (인발성형 ′델타데크′ 복합소재 교량바닥판의 국부처짐과 피로거동 분석)

  • 이성우;임병주;양필승
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.403-410
    • /
    • 2004
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck, called Delta Deck, is developed. In this paper, local deflection and fatigue characteristics of Delta Deck for DB24 truck load are evaluated through analysis and experiments.

  • PDF

Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior (피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰)

  • 심종성;오홍섭;김진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

Hollow Reinforced Concrete Bridge Column Systems with Reinforcement Details for Material Quantity Reduction: II. Experiments and Analyses (물량저감 철근상세를 갖는 중공 철근콘크리트 교각 시스템: II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.9-18
    • /
    • 2014
  • The purpose of this study is to investigate the seismic behavior of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and to provide the details and reference data. Five hollow reinforced concrete bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The adopted numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several the investigated test specimens. This study documents the testing of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

Parametric Study on Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction (물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면에 관한 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.159-169
    • /
    • 2013
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details, the diameter of the transverse reinforcement and loading types. Eighteen column section specimens were tested under quasi-static monotonic loading. In this study, the computer program RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used. A modified lateral confining effect model was adopted for the hollow bridge column sections. This study documents the testing of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

Analytical Study on the Seismic Behavior of RC Bridge Columns Using Shaking Table Tests (진동대 실험을 통한 철근콘크리트 교각의 지진거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Park, Chang-Young;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.49-59
    • /
    • 2007
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete bridge columns using shaking table tests. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor (HMT) algorithm. The proposed numerical method for the seismic behavior of reinforced concrete bridge columns using shaking table tests is verified by comparison with reliable experimental results.

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.

Influence of axial load and loading path on the performance of R.C. bridge piers

  • Kehila, Fouad;Bechtoula, Hakim;Benaouar, Djillali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.563-588
    • /
    • 2015
  • Piers are the most vulnerable part of a bridge structure during an earthquake event. During Kobe earthquake in 1995, several bridge piers of the Hanshin Expressway collapsed for more than 600m of the bridge length. In this paper, the most important results of an experimental and analytical investigation of ten reinforced concrete bridge piers specimens with the same cross section subjected to constant axial (or variable) load and reversed (or one direction) cycling loading are presented. The objective was to investigate the main parameters influencing the seismic performance of reinforced concrete bridge piers. It was found that loading history and axial load intensity had a great influence on the performance of piers, especially concerning strength and stiffness degradation as well as the energy dissipation. Controlling these parameters is one of the keys for an ideal seismic performance for a given structure during an eventual seismic event. Numerical models for the tested specimens were developed and analyzed using SeismoStruct software. The analytical results show reasonable agreement with the experimental ones. The analysis not only correctly predicted the stiffness, load, and deformation at the peak, but also captured the post-peak softening as well. The analytical results showed that, in all cases, the ratio, experimental peak strength to the analytical one, was greater than 0.95.

The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice (겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 석상근;손혁수;정철호;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice (겹침이음 상세에 따른 철근콘크리트 교각의 내진성능)

  • 이재훈;손혁수;석상근;정철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.345-352
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seisimc performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF