• 제목/요약/키워드: regulatory mutant

검색결과 158건 처리시간 0.029초

Identification of Positive and Negative Regulatory Elements of the Human Cytochrome P4501A2 (CYP1A2) Gene

  • Chung, Injae;Jeong, Choonsik;Jung, Kihwa;Bresnick, Edward
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1997년도 춘계학술대회
    • /
    • pp.81-81
    • /
    • 1997
  • We previously demonstrated an enhancer-like positive regulatory element within a 259-bp sequence (-2352 to-2094 bp) of the human CYP1A2 gene in HepG2 cells. Three protein binding sites were identified by DNase I footprint analyses within the 259-bp sequence: protected region A PRA ( -2283 to-2243 bp), PRB (-2218 to-2187 bp), and PRC (-2124 to-2098 bp) (I. Chung and E. Bresnick, Mol. Pharmacol. 47, 677-685, 1995). In the present study, the functional significance of those protected regions was examined. Transfection experiments with deletion and substitution mutants defined the PRB and PRC as containing positive and negative regulatory elements, respectively. Human breast carcinoma MCF-7 cells were cotransfected with a hepatocyte nuclear factor-1 (HNF-1) expression vector and CYP1A2 promoter-or thymidine kinase promoter-luciferase remoter gene constructs. HNF-1, which contributes to the liver specificity of genes, enhanced reporter gene activity in a PRC sequence-dependent manner. These results suggested that PRC could exist bound to a repressor which was displaceable by other transcription factors such as HNF-1. Results obtained by transfection of HepG2 hepatoma cells with various PRB substitution mutant-luciferase gene fusion constructs indicated that the entire sequence of PRB was necessary for promoter activity. Consequently, the regulation of CYP1A3 expression is very complex, requiring a number of both positive and negative regulatory factors.

  • PDF

Regulatory Mechanism of Lysine Biosynthetic Genes in Escherichia coli

  • Joe, Min-Ho;Mun, Hyo-Young;Hong, Mi-Ju;Kim, Seong-Jun;Park, Young-Hoon;Rhee, Sang-Ki;Kwon, Oh-Suk
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.236-241
    • /
    • 2004
  • In Escherichia coli, L-lysine biosynthetic pathway is composed of nine enzymatic reactions. It has been well established that most of the lysine biosynthetic genes are regulated by the lysine availability, even though they are all scattered around the chromosome without forming any multigenic operon structure. However, no transcriptional regulatory mechanism has been identified except for the activation of lysA gene by the LysR. In this study, changes in transcriptome profiles of wild type cells and lysR deletion mutant cells grown in the absence or presence of lysine were investigated by using DNA microarray technique. Microarray data analysis revealed three groups of genes whose expression varies depending on the availability of lysine or LysR or both. To further examine the regulatory patterns of lysine biosynthetic genes, lacZ operon fusions were constructed and their expression was measured under various conditions. Obtained results strongly suggest that there is an additional regulatory mechanism which senses the lysine availability and coordinates gene expression.

  • PDF

Transcriptome Analysis of Phosphate Starvation Response in Escherichia coli

  • Baek, Jong-Hwan;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.244-252
    • /
    • 2007
  • Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.

Aspergillus phoenicis의 한 돌연변이주에 의한 cellulase의 생성 및 그 특성 (Enhanced production of cellulase by a mutant strain of aspergillus phoenicis)

  • 이영록;고상균
    • 미생물학회지
    • /
    • 제20권3호
    • /
    • pp.125-133
    • /
    • 1982
  • Mutational experiments were performed to imporve the cellulase productivity of Aspergillus phoenicis KU175, isolated from the southern part of Korea, as a high cellulase producer. By treatment ultra-violet light nad 4-NQO(4-Nitroquinoline-N-Oxide), mutation waas induced, and treatment ultra-violet light and 4-NQO (4-Nitroquinoline-N-Oxide), mutation was induced, and A.phoenicis KU175-115 was finally selected for its highest avicelase production. Avicelase production of the mutant was increased about 2 times compared with those of the wild strain. However, activities of other hydrolytic enzymes, such as amylase, protease and nuclease, of the mutant strain didn't show a marked difference compared with those of the nuclease, of the mutant strain didn't show a marked difference compared with the wild strain, except slight increase in ribonuclease activity and slight decrease in glucoamylase activity. Avicelases from the mutant strain selected were purified from wheat bran culture by successive salting out, followed by dialysis and column chromatography, and their charcteristics were compared with thosw of the wild strain. Avicelase was separated into three peaks in the mutant strain as well as in the case of wild strain. Avicelase II activity of the mutant strain was prominently higher than that of the wild strain, while avicelase I and III activities of those were equivalent. The optimal pH ranges and stability of avicelase II from the mutant strain were pH4-5 and pH3.5-6.0, respectively, as well as in the case of the wild strain. The optimal temperature and thermal stability of avicelase II from the mutant strain were $40{\sim}50^{\circ}C\;and\;20{\sim}55^{\circ}C$, respectively. These results were same as those of the wild strain. By the using of Eadie-Hofastee plot, $K_m\;and\;V_{max}$ of avicelase II from the mutant and the wild strain were calculated to be 2.29mg/ml and $4.84{\mu}g$ reducing sugar as glucose per min equally, from the line fitted to the data by the least square method. Activity of avicelase II from the mutant strain was slightly activated by $Mg^{++}\;but\;inhibited\;by\;Cu^{++}, \;Mn^{++}\;and\;Zn^{++}$, as well as in the case of the wild strain. Therefore, it was concluded that the mutant didn't induce the formation of another avicelase isozyme, or the changes in the properties of avicelase, but induce the changes in the productively of the same avicelase II by the action of regulatory gane.

  • PDF

Quorum Sensing of Rhodobacter sphaeroides Negatively Regulates Cellular Poly-$\beta$-Hydroxybutyrate Content Under Aerobic Growth Conditions

  • Lee, Jeong-K.;Kho, Dhong-Hyo;Jang, Ji-Hee;Kim, Hye-Sun;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.477-481
    • /
    • 2003
  • The community escape response of Rhodobacter sphaeroides is exerted through the action of CerR and CerI, which code for a LuxR-type regulatory protein and acylhomoserine lactone synthase, respectively. Deletion of chromosomal DNA including cerR and cerI (mutant RI) or insertional interruption of cert (mutant AP3) resulted in two-fold increase in the cellular poly-${\beta}$-hydroxybutyrate (PHB) content In comparison with the wild-type under aerobic growth conditions. The PHB synthase (PhbC) activities of the cer mutants were doubled, and the enzyme expression was regulated at the level of phbC transcription. Thus, CerR, possibly in response to autoinducer (AI), appears to modulate the PHB content of aerobically grown cells by downregulating phbC transcription.

Effects of R100 Mutant MerR on Regulation of mer Operon from Shigella flexneri

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.245-249
    • /
    • 1994
  • An amino-terminal 14 amino acids deletion and three site-directed mutations were created to investigate the mechanism of induction and repression of MerR regulatory protein in R100 mer operon from gramnegative Shigella flexneri. The amino-terminal 14 amino acids deletion, Cysl17Ser, and Cys126Ser mutations abolished the inducibility of the mer operon and the Hisl18Ala mutation resulted in the reduction of inducibility (about 9.1 % remaining) in complementation experiment in the presence of $Hg^{2+}$ at subtoxic level ($1\mu M$). The complementation experiment with $Hg^{2+}$ absent showed that Hisl18Ala, Cys126Ser, and wild-type MerR could repress the operon but Cysl17Ser could not, and the amino-terminal deletion mutant could neither induce nor repress the R100 mer operon.

  • PDF

LAMMER Kinase Lkh1 Is an Upstream Regulator of Prk1-Mediated Non-Sexual Flocculation in Fission Yeast

  • Park, Yoon-Dong;Kwon, Soo Jeong;Bae, Kyung Sook;Park, Hee-Moon
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.236-241
    • /
    • 2018
  • The cation-dependent galactose-specific flocculation activity of the Schizosaccharomyces pombe null mutant of $lkh1^+$, the gene encoding LAMMER kinase homolog, has previously been reported by our group. Here, we show that disruption of $prk1^+$, another flocculation associated regulatory kinase encoding gene, also resulted in cation-dependent galactosespecific flocculation. Deletion of prk1 increased the flocculation phenotype of the $lkh1^+$ null mutant and its overexpression reversed the flocculation of cells caused by lkh1 deletion. Transcript levels of $prk1^+$ were also decreased by $lkh1^+$ deletion. Cumulatively, these results indicate that Lkh1 is one of the negative regulators acting upstream of Prk1, regulating non-sexual flocculation in fission yeast.

Identification of Pseudomonas aeruginosa Genes Crucial for Hydrogen Peroxide Resistance

  • Choi, Young-Seok;Shin, Dong-Ho;Chung, In-Young;Kim, Seol-Hee;Heo, Yun-Jeong;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1344-1352
    • /
    • 2007
  • An opportunistic human pathogen, Pseudomonas aeruginosa, contains the major catalase KatA, which is required to cope with oxidative and osmotic stresses. As an attempt to uncover the $H_2O_2$-dependent regulatory mechanism delineating katA gene expression, four prototrophic $H_2O_2$-sensitive mutants were isolated from about 1,500 TnphoA mutant clones of P. aeruginosa strain PA14. Arbitrary PCR and direct cloning of the transposon insertion sites revealed that one insertion is located within the katA coding region and two are within the coding region of oxyR, which is responsible for transcriptional activation of several antioxidant enzyme genes in response to oxidative challenges. The fourth insertion was within PA3815 (IscR), which encodes a homolog of the Escherichia coli iron-sulfur assembly regulator, IscR. The levels of catalase and SOD activities were significantly reduced in the iscR mutant, but not in the oxyR mutant, during the normal planktonic culture conditions. These results suggest that both IscR and OxyR are required for the optimal resistance to $H_2O_2$, which involves the expression of multiple antioxidant enzymes including KatA.

Aspergillus nidulans에서 유도한 섬유소 분해능 결함 돌연변이주의 특성분석 (Characterzation of Cellulose Nonutilizing Mutants from Aspergillus nidulans)

  • 홍순우;하영칠;윤이상
    • 미생물학회지
    • /
    • 제23권1호
    • /
    • pp.34-42
    • /
    • 1985
  • Cellulase의 합성 및 그의 조절기작을 밝히기 위한 기초연구로서 Aspergillus nidulans FGSC 168로 부터 CMC 배지에서 자라지 못하는 돌연변이주인 TCD27, NCN2, ACN 14, ACN3를 얻어내어 이들의 성질을 분석하였다. 이들 4가지 돌연변이주는 모두 inducer를 세포내로 수송하는 permease를 만들어 내는 유전자에는 아무 결함이 없었다. 이들 중 ACN3는 cellulase의 합성 및 그의 조절 기작과는 직접 관련이 없는 돌연변이주로 추정되나, TCD 27과 NCN2는 조절 유전자에 돌연변이가 일어났을 가능성이 있고, ACN 14는 구조 유전자 돌연변이주일 것으로 추정되었다.

  • PDF

DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

  • Kim, Hong-Il;Park, Young-Jin
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.190-200
    • /
    • 2016
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA micro-array analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated ($<\;-2\;log_2$ fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.