DOI QR코드

DOI QR Code

DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

  • Kim, Hong-Il (Department of Biomedical Chemistry, Konkuk University) ;
  • Park, Young-Jin (Department of Biomedical Chemistry, Konkuk University)
  • Received : 2015.10.05
  • Accepted : 2016.01.02
  • Published : 2016.06.01

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA micro-array analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated ($<\;-2\;log_2$ fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.

Keywords

References

  1. Barton-Willis, P. A., Wang, M. C., Holliday, M. J., Long, M. R. and Keen, N. T. 1984. Purification and composition of lipopolysaccharides from Pseudomonas syringae pv. glycinea. Physiol. Plant Pathol. 25:387-398. https://doi.org/10.1016/0048-4059(84)90045-6
  2. Cho, H. J., Park, Y. J., Noh, T. H., Kim, Y. T., Kim, J. G., Song, E. S., Lee, D. H. and Lee, B. M. 2008. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microb. Pathog. 44:473-483. https://doi.org/10.1016/j.micpath.2007.12.002
  3. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M. and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  4. Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33:173-197. https://doi.org/10.1146/annurev.py.33.090195.001133
  5. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  6. Feng, T. Y. and Kuo, T. T. 1975. Bacterial leaf blight of rice plant. VI. Chemotactic responses of Xanthomonas oryzae to water droplets exudated from water pores on the leaf of rice plants. Bot. Bull. Acad. Sin. 16:126-136.
  7. Heinrichs, D. E., Yethon, J. A. and Whitfield, C. 1998. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol. Microbiol. 30:221-232. https://doi.org/10.1046/j.1365-2958.1998.01063.x
  8. Inoue, T., Shingaki, R., Hirose, S., Waki, K., Mori, H. and Fukui, K. 2007. Genome-wide screening of genes required for swarming motility in Escherichia coli K-12. J. Bacteriol. 189:950-957. https://doi.org/10.1128/JB.01294-06
  9. Kamoun, S. and Kado, C. I. 1990. Phenotypic switching affecting chemotaxis, xanthan production, and virulence in xanthomonas campestris. Appl. Environ. Microbiol. 56:3855-3860.
  10. Katzen, F., Ferreiro, D. U., Oddo, C. G., Ielmini, M. V., Becker, A., Pühler, A. and Ielpi, L. 1998. Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180:1607-1617.
  11. Kim, H. I., Noh, T. H., Lee, C. S. and Park, Y. J. 2015. A mutation in the aroE gene affects pigment production, virulence, and chemotaxis in Xanthomonas oryzae pv. oryzae. Microbiol. Res. 170:124-130. https://doi.org/10.1016/j.micres.2014.08.006
  12. Kingsley, M. T., Gabriel, D. W., Marlow, G. C. and Roberts, P. D. 1993. The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J. Bacteriol. 175:5839-5850. https://doi.org/10.1128/jb.175.18.5839-5850.1993
  13. Leach, J. E., Sherwood, J., Fulton, R. W. and Sequeira, L. 1983. Comparison of soluble proteins associated with disease resistance induced by bacterial lipopolysaccharide and by viral necrosis. Physiol. Plant Pathol. 23:377-385. https://doi.org/10.1016/0048-4059(83)90022-X
  14. Lee, B. M., Park, Y. J., Park, D. S., Kang, H. W., Kim, J. G., Song, E. S., Park, I. C., Yoon, U. H., Hahn, J. H., Koo, B. S., Lee, G. B., Kim, H., Park, H. S., Yoon, K. O., Kim, J. H., Jung, C. H., Koh, N. H., Seo, J. S. and Go, S. J. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33:577-586. https://doi.org/10.1093/nar/gki206
  15. Newman, M. A., Daniels, M. J. and Dow, J. M. 1995. Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol. Plant-Microbe Interact. 8:778-780. https://doi.org/10.1094/MPMI-8-0778
  16. Ottemann, K. M. and Miller, J. F. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24:1109-1117. https://doi.org/10.1046/j.1365-2958.1997.4281787.x
  17. Park, Y. J., Song, E. S., Kim, Y. T., Noh, T. H., Kang, H. W. and Lee, B. M. 2007. Analysis of virulence and growth of a purine auxotrophic mutant of Xanthomonas oryzae pathovar oryzae. FEMS Microbiol. Lett. 276:55-59. https://doi.org/10.1111/j.1574-6968.2007.00909.x
  18. Rick, P. D. 1987. Lipopolysaccharide biosynthesis. In: Escherichia coli and Salmonella typhimurium: cellular and molecular biology, eds. by F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. A. Schaechter and H. E. Umbarger, pp. 648-662. American Society for Microbiology, Washington, DC, USA.
  19. Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY, USA.
  20. Schnaitman, C. A. and Klena, J. D. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev. 57:655-682.
  21. Sirisena, D. M., Brozek, K. A., MacLachlan, P. R., Sanderson, K. E. and Raetz, C. R. 1992. The rfaC gene of Salmonella typhimurium. Cloning, sequencing, and enzymatic function in heptose transfer to lipopolysaccharide. J. Biol. Chem. 267:18874-18884.
  22. Sirisena, D. M., MacLachlan, P. R., Liu, S. L., Hessel, A. and Sanderson, K. E. 1994. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium. J. Bacteriol. 176:2379-2385. https://doi.org/10.1128/jb.176.8.2379-2385.1994
  23. Tsai, C. M. and Frasch, C. E. 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119:115-119. https://doi.org/10.1016/0003-2697(82)90673-X
  24. Vojnov, A. A., Zorreguieta, A., Dow, J. M., Daniels, M. J. and Dankert, M. A. 1998. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology 144:1487-1493. https://doi.org/10.1099/00221287-144-6-1487
  25. Westphal, O. and Jann, K. 1965. Bacterial lipopolysaccharides: Extraction with phenol water and further applications of the procedure. In: Methods in carbohydrate chemistry, ed. by R. L. Whistler, pp. 83-91. Academic Press, New York, NY, USA.
  26. Yoon, K. H. and Cho, J. Y. 2007. Transcriptional analysis of the gum gene cluster from Xanthomonas oryzae pathovar oryzae. Biotechnol. Lett. 29:95-103.

Cited by

  1. The effect of bacterial chemotaxis on host infection and pathogenicity vol.42, pp.1, 2018, https://doi.org/10.1093/femsre/fux052