• 제목/요약/키워드: regulatory genes

검색결과 706건 처리시간 0.033초

고등식물의 유전자 발현의 조절 (Regulation of Gene Expression in Higher Plant)

  • 심웅섭
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.241-260
    • /
    • 1987
  • The regulatory mechanisms of gene expression in higher plant were not ascertained in detail because the genome size is very large and complex. However, the above-mentioned study is remarkably progressed in parallel with development of DNA recombinant technology and plant vector system. Some research results connected with the mechanisms could be summarized as follows. 1. Many plant genes including chloroplast genes are cloned. 2. The structures of some regulatory regions of gene expression are determined, and it is confirmed that new regulatory units are made by transposable elements. 3. Plant gene expression is regulated not only at transcriptional level but also at translational level. 4. The factors that regulate plant gene expression could be divided as two categorys. One is endogenous elements including the structural change of chromatin during development stage and tissue differentiation. The other is environmental stimulations such as air, water, heat, salts and light. However, some sufficient research-aid fund is essential in order to study the regulatory mechanisms of gene expression more systematically.

  • PDF

Identification of Potential Corynebacterium ammoniagenes Purine Gene Regulators Using the pur-lacZ Reporter in Escherichia coli

  • HAN , RI-NA;CHO, ICK-HYUN;CHUNG, SUNG-OH;HAN, JONG-KWON;LEE, JIN-HOO;KIM, SOO-KI;CHOI, KANG-YELL
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1249-1255
    • /
    • 2004
  • This study has developed Corynebacterium ammoniagenes (c. ammoniagenes) purine gene transcriptional reporters (purF-lacZ and purE-lacZ) that function in Escherichia coli (E. coli) DH5a. After transformation of a C. ammoniagenes gDNA library into E. coli cells harboring either purF-lacZ or purE-lacZ, C. ammoniagenes clones were obtained that repress purF-lacZ and purE-lacZ gene expression. The potential purE and purF regulatory genes are homologous to the genes encoding transcription regulators, the regulatory subunit of RNA polymerase, and genes for purine nucleotide biosynthesis of various bacteria. The C. ammoniagenes purE-lacZ and purF-lacZ reporters were repressed by adenine and guanine within E. coli, indicating similarity in the regulatory mechanism of purine biosynthesis in C. ammoniagenes and E. coli. Gene regulation of pur-lacZ by adenine and guanine was partly abolished in cells expressing potential purine regulatory genes, indicating functionality of the purine gene regulators in repression of purE-lacZ and purF-lacZ. The purE-lacZ and purF-lacZ reporters can be used for the screening of genes involved in the regulation of the de novo synthesis of the purine nucleotides.

Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species

  • Duong, Cae Thi Phung;Lee, Han-Na;Choi, Si-Sun;Lee, Sang-Yup;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.136-139
    • /
    • 2009
  • Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-and-constitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the low-producer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1995년도 한국생물과학협회 학술발표대회
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

Networks of MicroRNAs and Genes in Retinoblastomas

  • Li, Jie;Xu, Zhi-Wen;Wang, Kun-Hao;Wang, Ning;Li, De-Qiang;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6631-6636
    • /
    • 2013
  • Through years of effort, researchers have made notable progress in gene and microRNA fields about retinoblastoma morbidity. However, experimentally validated data for genes, microRNAs (miRNAs) and transcription factors (TFs) can only be found in a scattered form, which makes it difficult to conclude the relationship between genes and retinoblastoma systematically. In this study, we regarded genes, miRNAs and TFs as elements in the regulatory network and focused on the relationship between pairs of examples. In this way, we paid attention to all the elements macroscopically, instead of only researching one or several. To show regulatory relationships over genes, miRNAs and TFs clearly, we constructed 3 regulatory networks hierarchically, including a differentially expressed network, a related network and a global network, for analysis of similarities and comparison of differences. After construction of the three networks, important pathways were highlighted. We constructed an upstream and downstream element table of differentially expressed genes and miRNAs, in which we found self-adaption relations and circle-regulation. Our study systematically assessed factors in the pathogenesis of retinoblastoma and provided theoretical foundations for gene therapy researchers. In future studies, especial attention should be paid to the highlighted genes and miRNAs.

FCAnalyzer: A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms

  • Kim, Sang-Bae;Ryu, Gil-Mi;Kim, Young-Jin;Heo, Jee-Yeon;Park, Chan;Oh, Berm-Seok;Kim, Hyung-Lae;Kimm, Ku-Chan;Kim, Kyu-Won;Kim, Young-Youl
    • Genomics & Informatics
    • /
    • 제5권1호
    • /
    • pp.10-18
    • /
    • 2007
  • Numerous studies have reported that genes with similar expression patterns are co-regulated. From gene expression data, we have assumed that genes having similar expression pattern would share similar transcription factor binding sites (TFBSs). These function as the binding regions for transcription factors (TFs) and thereby regulate gene expression. In this context, various analysis tools have been developed. However, they have shortcomings in the combined analysis of expression patterns and significant TFBSs and in the functional analysis of target genes of significantly overrepresented putative regulators. In this study, we present a web-based A Functional Clustering Analysis Tool for Predicted Transcription Regulatory Elements and Gene Ontology Terms (FCAnalyzer). This system integrates microarray clustering data with similar expression patterns, and TFBS data in each cluster. FCAnalyzer is designed to perform two independent clustering procedures. The first process clusters gene expression profiles using the K-means clustering method, and the second process clusters predicted TFBSs in the upstream region of previously clustered genes using the hierarchical biclustering method for simultaneous grouping of genes and samples. This system offers retrieved information for predicted TFBSs in each cluster using $Match^{TM}$ in the TRANSFAC database. We used gene ontology term analysis for functional annotation of genes in the same cluster. We also provide the user with a combinatorial TFBS analysis of TFBS pairs. The enrichment of TFBS analysis and GO term analysis is statistically by the calculation of P values based on Fisher’s exact test, hypergeometric distribution and Bonferroni correction. FCAnalyzer is a web-based, user-friendly functional clustering analysis system that facilitates the transcriptional regulatory analysis of co-expressed genes. This system presents the analyses of clustered genes, significant TFBSs, significantly enriched TFBS combinations, their target genes and TFBS-TF pairs.

Nrf2 and Keap1 Regulation of Antioxidant and Phase II Enzyme Genes

  • Yamamoto, M.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.24-42
    • /
    • 2002
  • Antioxidant responsive element (ARE) mediates the transcriptional activation of the genes encoding phase II drug metabolizing enzymes and antioxidative stress genes. The ARE consensus sequence shows high similarity to NF-E2 binding sequence, a cisacting erythroid gene regulatory element.(omitted)

  • PDF

Inference of Genetic Regulatory Modules Using ChIP-on-chip and mRNA Expression Data

  • Cho, Hye-Young;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • 제2권2호
    • /
    • pp.62-65
    • /
    • 2007
  • We present here the strategy of data integration for inference of genetic regulatory modules. First, we construct all possible combinations of regulators of genes using chromatin-immunoprecipitation(ChIP)-chip data. Second, hierarchical clustering method is employed to analyze mRNA expression profiles. Third, integration method is applied to both of the data. Finally, we construct a genetic regulatory module which is involved in the function of ribosomal protein synthesis.

  • PDF

Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes

  • Kalyani, Ruthala;Lee, Ji-Yeon;Min, Hyehyun;Yoon, Heejei;Kim, Myoung Hee
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.395-402
    • /
    • 2016
  • Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following $TGF-{\beta}2$ treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.