• Title/Summary/Keyword: regulatory factor

Search Result 763, Processing Time 0.033 seconds

In-Depth Relationships between Emotional Intelligence and Personality Traits in Meditation Practitioners

  • Choi, Soo-Hee;An, Seung Chan;Lee, Ul Soon;Yun, Je-Yeon;Jang, Joon Hwan;Kang, Do-Hyung
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.391-397
    • /
    • 2018
  • Objective: Meditation can elicit trait-like changes in psychological and social styles, as well as enhancement of emotional regulatory capacity. We investigated the relation between personality traits and emotional intelligence in meditation practitioners. Methods: Seventy-two long-term practitioners of mind-body training (MBT) and 62 healthy comparative individuals participated in the study. The participants completed emotional intelligence questionnaires and the Myers-Briggs Type Indicator (MBTI). Results: The MBT group revealed higher scores on all five emotional intelligence factors than did those in the control group, such as emotional awareness and expression, empathy, emotional thinking, emotional application, and emotional regulation (all $p{\leq}0.001$). MBT practitioners also had higher scores on the intuition of perceiving function (t=-2.635, p=0.010) and on the feeling of the judging function (t=-3.340, p=0.001) of the MBTI compared with those in the control group. Only the MBT group showed a robust relationship with every factor of emotional intelligence and MBTI-defined intuitive styles, indicating that higher scores of emotional intelligence were related to higher scores for intuition. Conclusion: Emotional intelligence of meditation practitioners showed notable relationships with some features of personality trait. In-depth associations between emotional intelligence and personality traits would help to foster psychological functions in meditation practitioners.

The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.469-474
    • /
    • 2019
  • Kruppel-like factor 2 (KLF2) has been implicated in the regulation of cell proliferation, differentiation, and survival in a variety of cells. Recently, it has been reported that KLF2 regulates the p65-mediated transactivation of $NF-{\kappa}B$. Although the $NF-{\kappa}B$ pathway plays an important role in the differentiation of osteoclasts and osteoblasts, the role of KLF2 in these bone cells has not yet been fully elucidated. In this study, we demonstrated that KLF2 regulates osteoclast and osteoblast differentiation. The overexpression of KLF2 in osteoclast precursor cells inhibited osteoclast differentiation by downregulating c-Fos, NFATc1, and TRAP expression, while KLF2 overexpression in osteoblasts enhanced osteoblast differentiation and function by upregulating Runx2, ALP, and BSP expression. Conversely, the downregulation of KLF2 with KLF2-specific siRNA increased osteoclast differentiation and inhibited osteoblast differentiation. Moreover, the overexpression of interferon regulatory protein 2-binding protein 2 (IRF2BP2), a regulator of KLF2, suppressed osteoclast differentiation and enhanced osteoblast differentiation and function. These effects were reversed by downregulating KLF2. Collectively, our data provide new insights and evidence to suggest that the IRF2BP2/KLF2 axis mediates osteoclast and osteoblast differentiation, thereby affecting bone homeostasis.

Effect of 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene on cellulose synthase A (CesA) genes in flax (Linum usitatissimum L. 'Nike') seedlings

  • Lim, Hansol;Paek, Seung-Ho;Oh, Seung-Eun
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1237-1248
    • /
    • 2018
  • Introduction Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages. Objective To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development. Methods The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. 'Nike') seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with $10^{-4}$ and $10^{-3}M$ 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4-6-day-old flax seedlings. Results ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC. Conclusion Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.

A Comparative Study of the Methods to Assess Occupational Noise Exposures of Fish Harvesters

  • Burella, Giorgio;Moro, Lorenzo
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.230-237
    • /
    • 2021
  • Background: Noise-induced hearing loss is a well-known occupational disease that affects many fish harvesters from many fisheries worldwide, whose risk factor is prolonged exposure to hazardous noise levels. To date, academic research activities and regulatory bodies have not provided any comparative analysis among the existing methods to assess noise exposure levels of fish harvesters. This paper provides a comparison of four relevant assessment methods of noise exposure, examining the results of a measurement campaign performed onboard small fishing vessels from Newfoundland and Labrador. Methods: We traveled onboard 11 vessels engaged in multiple fisheries from Newfoundland and Labrador and performed extensive noise exposure surveys using the simplified International Maritime Organization method, the full-day measurement method, and the two methods provided by ISO 9612:2009, the task-based method and job-based method (JBM). Results: The results showed that the four methods yield similar values when the noise components are dominated by the engine and auxiliaries (steady-state sources); when noise components are dominated by the fishing gear, task-based method and the simplified International Maritime Organization method estimates are less accurate than JBM, using full-day measurements as baseline. Conclusion: The JBM better assesses noise exposure in small-scale fisheries, where noise exposure has significant variance and uncertainties on the exposure levels are higher.

Application of KORSLE to Estimate Soil Erosion at Field Scale (한국형 토양유실공식에 의한 토양유실량 현장예측)

  • Song, Jae Min;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.31-41
    • /
    • 2019
  • In 2013, the Ministry of Environment in South Korea promulgated a new regulatory bulletin that contained revised enforcement ordinance on soil management protocols. The bulletin recommends the use of Universal Soil Loss Equation (USLE) for the soil erosion estimation, but USLE has limited applicability in prediction of soil erosion because it does not allow direct estimation of actual mass of soil erosion. Therefore, there is a great need of revising the protocol to allow direct comparison between the measured and estimated values of soil erosion. The Korean Soil Loss Equation (KORSLE) was developed recently and used to estimate soil loss in two fields as an alternative to existing USLE model. KORSLE was applied to estimate monthly rainfall erosivity indices as well as temporal variation in potential soil loss. The estimated potential soil loss by KORSLE was adjusted with correction factor for direct comparison with measured soil erosion. The result was reasonable since Nash-Stucliff efficiency were 0.8020 in calibration and 0.5089 in validation. The results suggest that KORSLE is an appropriate model as an alternative to USLE to predict soil erosion at field scale.

Ameliorative Potential of Rengyolone Against CCI-induced Neuropathic Pain in Rats

  • Lee, Gil-Hyun;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.310-318
    • /
    • 2020
  • The sciatic nerve is the largest nerve among the peripheral nerves, and the damage to the sciatic nerve is caused by mechanical and physical pressure. This is an important disease that consumes a lot of time and money in the treatment process. Among them, research on relieving nerve pain caused by damage to the peripheral sciatic nerve has been made efforts to prevent and treat this disease through various methods such as drugs, natural products, electrical stimulation, exercise therapy, and massage. Existing treatments are not very effective in neurological pain, and countermeasures are needed. Forsythia Fructus, used in this study, has been used as a therapeutic agent for infectious diseases and a pain reliever for cancer from the past, and in past studies, it has been known to properly control the inflammatory response. In this study, rengyolone, a physiologically active substance of Forsythiae Fructus, was administered to rats that caused chronic left nerve pain to verify the pain relief effect. As a result of the experiment, it was found that mechanical pain and cold stimulation pain were significantly reduced in the rengyolone-treated group compared to the non-administered group. In addition, it was found that nerve growth factor (NGF) mRNA expression was significantly reduced and Cyclin-dependent kinase 2 (Cdc2) expression was increased in the rengyolone administration group. This increase in NGF expression is thought to be related to rengyolone's anti-inflammatory regulatory mechanism. It is expected that the reduced NGF was directly involved in pain relief.

NMR Hydrogen Exchange Study of DNA Duplex Containing the Consensus Binding Site for Human MEIS1

  • Choi, Seo-Ree;Jin, Ho-seong;Seo, Yeo-Jin;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.117-122
    • /
    • 2020
  • Transcription factors are proteins that bind specific sites or elements in regulatory regions of DNA, known as promoters or enhancers, where they control the transcription or expression of target genes. MEIS1 protein is a DNA-binding domain present in human transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the wild-type containing the consensus DNA-binding site for the MEIS1 and those of the mutant DNA duplexes using NMR spectroscopy. The G2A-, A3G- and C4T-mutant DNA duplexes lead to clear changes in thermal stabilities of these four consensus base pairs. These unique dynamic features of the four base pairs in the consensus 5'-TGAC-3' sequence might play crucial roles in the effective DNA binding of the MEIS1 protein.

Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.226-232
    • /
    • 2021
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFNmediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

Characterization of transcription factor genes related to cold tolerance in Brassica napus

  • Sharma, Mayur Mukut Murlidhar;Ramekar, Rahul Vasudeo;Park, Nam-Il;Choi, Ik-Young;Choi, Seon-Kang;Park, Kyong-Cheul
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2021
  • Brassica napus is the third most important oilseed crop in the world; however, in Korea, it is greatly affected by cold stress, limiting seed growth and production. Plants have developed specific stress responses that are generally divided into three categories: cold-stress signaling, transcriptional/post-transcriptional regulation, and stress-response mechanisms. Large numbers of functional and regulatory proteins are involved in these processes when triggered by cold stress. Here, our objective was to investigate the different genetic factors involved in the cold-stress responses of B. napus. Consequently, we treated the Korean B. napus cultivar Naehan at the 4-week stage in cold chambers under different conditions, and RNA and cDNA were obtained. An in silico analysis included 80 cold-responsive genes downloaded from the National Center for Biotechnology Information (NCBI) database. Expression levels were assessed by reverse transcription polymerase chain reaction, and 14 cold-triggered genes were identified under cold-stress conditions. The most significant genes encoded zinc-finger proteins (33.7%), followed by MYB transcription factors (7.5%). In the future, we will select genes appropriate for improving the cold tolerance of B. napus.