• 제목/요약/키워드: regression modeling

검색결과 871건 처리시간 0.025초

Analysis of Neural Network Approaches for Nonlinear Modeling of Switched Reluctance Motor Drive

  • Saravanan, P;Balaji, M;Balaji, Nagaraj K;Arumugam, R
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1548-1555
    • /
    • 2017
  • This paper attempts to employ and investigate neural based approaches as interpolation tools for modeling of Switched Reluctance Motor (SRM) drive. Precise modeling of SRM is essential to analyse the performance of control strategies for variable speed drive application. In this work the suitability of Generalized Regression Neural Network (GRNN) and Extreme Learning Machine (ELM) in addition to conventional neural network are explored for improving the modeling accuracy of SRM. The neural structures are trained with the data obtained by modeling of SRM using Finite Element Analysis (FEA) and the trained neural network is incorporated in the model of SRM drive. The results signify the modeling accuracy with GRNN model. The closed loop drive simulation is performed in MATLAB/Simulink environment and the closeness of the results in comparison with the experimental prototype validates the modeling approach.

IT중소기업의 리더십과 임파워먼트에서 MMR과 SEM 검증방법에 따른 팔로워십 조절효과분석 (The moderating effects Analysis of followership according to the MMR & SEM methods to leadership and empowerment in IT SMEs)

  • 이영신;박재성
    • 디지털산업정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.199-212
    • /
    • 2012
  • This study focuses on the influence of followership on leadership and empowerment, and to verify based on the control variables taken in IT SME's to enhance competitiveness through innovation and improvement plan that have been taken. Because there can be a lot of information to be taken, the laws of Moderated Regression Multiple analysis(MMR) were used. Amos, due to the moderating effect of Structural Equation Modeling(SEM) has been employed to re-verify the results seen with Moderated Regression Multiple analysis. The paper focuses on determining whether transformational leadership or transactional leadership is effective as shown by the levels of empowerment derived from these two types of leadership under study. As a result, both the Moderated Regression Multiple analysis and structural equation model searched information on transformational and followership for empowerment having moderating effects. In the Moderated Regression Multiple analysis, results showed that empowerment for leadership in business in the regulation of followership role appeared not to be seen. However, using the structural equation modeling, moderating effects have been found.

토픽모델링과 시계열회귀분석을 활용한 정보시스템분야 연구동향 분석 (Investigation of Research Trends in Information Systems Domain Using Topic Modeling and Time Series Regression Analysis)

  • 김창식;최수정;곽기영
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권6호
    • /
    • pp.1143-1150
    • /
    • 2017
  • 본 연구의 목적은 국내에서 2002년부터 2016년까지 출판된, 대표적인 정보시스템분야 저널의 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 Asia Pacific Journal of Information Systems, Information Systems Review, The Journal of Information Systems에 출판된 논문의 초록 1,245편을 분석 하였다. 본 연구에서는 최근 중요하게 다루어지는 토픽모델링과 시계열회귀분석 기법을 활용하였다. 토픽모델링 분석결과, 20개의 토픽이 도출되었고 "시스템구축", "혁신역량", 및 "고객충성도" 등의 순으로 확인되었다. 둘째, 시계열회귀분석 결과, 상승 추세를 나타내는 토픽으로는 "고객충성도", "소통혁신", "정보보호", 및 "개인정보보호" 가 나타났고, 하락 추세를 나타나는 토픽으로는 "시스템구축" 및 "웹사이트" 가 도출되었다.

최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 이용한 지속 모음 모델링 (Sustained Vowel Modeling using Nonlinear Autoregressive Method based on Least Squares-Support Vector Regression)

  • 장승진;김효민;박영철;최홍식;윤영로
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.957-963
    • /
    • 2007
  • 본 연구에서는 비선형 지속 모음 모델링을 위한 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 소개하고 분석하였다. 비주기적인 파형 특성을 갖는 양성 후두 질환자 43명의 지속 모음을 대상으로 한 실험에서 제안된 비선형 합성기는 거의 완벽하게 혼란한 지속 모음을 생성하고 선형 예측 코딩은 할 수 없는 주파수 변동과 같은 자연스러운 음의 특성 또한 보존할 수 있었다. 하지만 일부 모음의 합성 결과 실제 원음과 다른 차이점을 보였다. 이러한 결과들은 단일 밴드 모델이 음의 고주파 성분을 조정, 분해 못하기 때문에 발생한 것이라 가정된다. 그러므로 웨이블릿 필터 뱅크를 이용한 멀티 밴드 모델을 단일 밴드 모델과 대치하여 실험을 수행한 결과 향상된 안정성을 보였다. 결과적으로 최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법은 성공적으로 원음에 가까운 합성음을 생성할 수 있다는 것을 확인 할 수 있었다.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.

Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong using Aqua/MODIS Satellite Images

  • Wong, Man-Sing;Lee, Kwon-Ho;Kim, Young-Joon;Nichol, Janet Elizabeth;Li, Zhangqing;Emerson, Nick
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.161-169
    • /
    • 2007
  • A study was conducted in the Hong Kong with the aim of deriving an algorithm for the retrieval of suspended sediment (SS) and sea surface salinity (SSS) concentrations from Aqua/MODIS level 1B reflectance data with 250m and 500m spatial resolutions. 'In-situ' measurements of SS and SSS were also compared with coincident MODIS spectral reflectance measurements over the ocean surface. This is the first study of SSS modeling in Southeast Asia using earth observation satellite images. Three analysis techniques such as multiple regression, linear regression, and principal component analysis (PCA) were performed on the MODIS data and the 'in-situ' measurement datasets of the SS and SSS. Correlation coefficients by each analysis method shows that the best correlation results are multiple regression from the 500m spatial resolution MODIS images, $R^2$= 0.82 for SS and $R^2$ = 0.81 for SSS. The Root Mean Square Error (RMSE) between satellite and 'in-situ' data are 0.92mg/L for SS and 1.63psu for SSS, respectively. These suggest that 500m spatial resolution MODIS data are suitable for water quality modeling in the study area. Furthermore, the application of these models to MODIS images of the Hong Kong and Pearl River Delta (PRO) Region are able to accurately reproduce the spatial distribution map of the high turbidity with realistic SS concentrations.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

Tilted beta regression and beta-binomial regression models: Mean and variance modeling

  • Edilberto Cepeda-Cuervo
    • Communications for Statistical Applications and Methods
    • /
    • 제31권3호
    • /
    • pp.263-277
    • /
    • 2024
  • This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the combination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture is parameterized as a function of their mean and variance. These new parameterized distributions include as particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new linear regression models to deal with overdispersed binomial datasets. These new models are defined from the proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to the seeds germination rate according to the type seed and root.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.