• Title/Summary/Keyword: regression function

Search Result 2,161, Processing Time 0.037 seconds

Wavelet Estimation of Regression Functions with Errors in Variables

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.849-860
    • /
    • 1999
  • This paper addresses the issue of estimating regression function with errors in variables using wavelets. We adopt a nonparametric approach in assuming that the regression function has no specific parametric form, To account for errors in covariates deconvolution is involved in the construction of a new class of linear wavelet estimators. using the wavelet characterization of Besov spaces the question of regression estimation with Besov constraint can be reduced to a problem in a space of sequences. Rates of convergence are studied over Besov function classes $B_{spq}$ using $L_2$ error measure. It is shown that the rates of convergence depend on the smoothness s of the regression function and the decay rate of characteristic function of the contaminating error.

  • PDF

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Outlier Identification in Regression Analysis using Projection Pursuit

  • Kim, Hyojung;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.633-641
    • /
    • 2000
  • In this paper, we propose a method to identify multiple outliers in regression analysis with only assumption of smoothness on the regression function. Our method uses single-linkage clustering algorithm and Projection Pursuit Regression (PPR). It was compared with existing methods using several simulated and real examples and turned out to be very useful in regression problem with the regression function which is far from linear.

  • PDF

Parameter Estimation and Prediction for NHPP Software Reliability Model and Time Series Regression in Software Failure Data

  • Song, Kwang-Yoon;Chang, In-Hong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • We consider the mean value function for NHPP software reliability model and time series regression model in software failure data. We estimate parameters for the proposed models from two data sets. The values of SSE and MSE is presented from two data sets. We compare the predicted number of faults with the actual two data sets using the mean value function and regression curve.

Model-Based Prediction of the Population Proportion and Distribution Function Using a Logistic Regression

  • Park, Min-Gue
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.783-791
    • /
    • 2008
  • Estimation procedure of the finite population proportion and distribution function is considered. Based on a logistic regression model, an approximately model- optimal estimator is defined and conditions for the estimator to be design-consistent are given. Simulation study shows that the model-optimal design-consistent estimator defined under a logistic regression model performs well in estimating the finite population distribution function.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

Semiparametric Kernel Fisher Discriminant Approach for Regression Problems

  • Park, Joo-Young;Cho, Won-Hee;Kim, Young-Il
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.227-232
    • /
    • 2003
  • Recently, support vector learning attracts an enormous amount of interest in the areas of function approximation, pattern classification, and novelty detection. One of the main reasons for the success of the support vector machines(SVMs) seems to be the availability of global and sparse solutions. Among the approaches sharing the same reasons for success and exhibiting a similarly good performance, we have KFD(kernel Fisher discriminant) approach. In this paper, we consider the problem of function approximation utilizing both predetermined basis functions and the KFD approach for regression. After reviewing support vector regression, semi-parametric approach for including predetermined basis functions, and the KFD regression, this paper presents an extension of the conventional KFD approach for regression toward the direction that can utilize predetermined basis functions. The applicability of the presented method is illustrated via a regression example.

Two-step LS-SVR for censored regression

  • Bae, Jong-Sig;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.393-401
    • /
    • 2012
  • This paper deals with the estimations of the least squares support vector regression when the responses are subject to randomly right censoring. The estimation is performed via two steps - the ordinary least squares support vector regression and the least squares support vector regression with censored data. We use the empirical fact that the estimated regression functions subject to randomly right censoring are close to the true regression functions than the observed failure times subject to randomly right censoring. The hyper-parameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation function. Experimental results are then presented which indicate the performance of the proposed procedure.

Support Vector Median Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2003
  • Median regression analysis has robustness properties which make it an attractive alternative to regression based on the mean. Support vector machine (SVM) is used widely in real-world regression tasks. In this paper, we propose a new SV median regression based on check function. And we illustrate how this proposed SVM performs and compare this with the SVM based on absolute deviation loss function.

  • PDF

A Study on Kernel Type Discontinuity Point Estimations

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.929-937
    • /
    • 2003
  • Kernel type estimations of discontinuity point at an unknown location in regression function or its derivatives have been developed. It is known that the discontinuity point estimator based on $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a zero value at the point 0 makes a poor asymptotic behavior. Further, the asymptotic variance of $Gasser-M\ddot{u}ller$ regression estimator in the random design case is 1.5 times larger that the one in the corresponding fixed design case, while those two are identical for the local polynomial regression estimator. Although $Gasser-M\ddot{u}ller$ regression estimator with a one-sided kernel function which has a non-zero value at the point 0 for the modification is used, computer simulation show that this phenomenon is also appeared in the discontinuity point estimation.

  • PDF