• Title/Summary/Keyword: regression estimators

Search Result 227, Processing Time 0.021 seconds

Small-Sample Inference in the Errors-in-Variables Model (소표본 errors-in-vairalbes 모형에서의 통계 추론)

  • 소병수
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.1
    • /
    • pp.69-79
    • /
    • 1997
  • We consider the semiparametric linear errors-in-variables model: yi=(${\alpha}+{\beta}ui+{\varepsilon}i$, xi=ui+${\varepsilon}i$ i=1, …, n where (xi, yi) stands for an observation vector, (ui) denotes a set of incidental nuisance parameters, (${\alpha}$ , ${\beta}$) is a vector of regression parameters and (${\varepsilon}i$, ${\delta}i$) are mutually uncorrelated measurement errors with zero mean and finite variances but otherwise unknown distributions. On the basis of a simple small-sample low-noise a, pp.oximation, we propose a new method of comparing the mean squared errors(MSE) of the various competing estimators of the true regression parameters ((${\alpha}$ , ${\beta}$). Then we show that a class of estimators including the classical least squares estimator and the maximum likelihood estimator are consistent and first-order efficient within the class of all regular consistent estimators irrespective of type of measurement errors.

  • PDF

Item sum techniques for quantitative sensitive estimation on successive occasions

  • Priyanka, Kumari;Trisandhya, Pidugu
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.175-189
    • /
    • 2019
  • The problem of the estimation of quantitative sensitive variable using the item sum technique (IST) on successive occasions has been discussed. IST difference, IST regression, and IST general class of estimators have been proposed to estimate quantitative sensitive variable at the current occasion in two occasion successive sampling. The proposed new estimators have been elaborated under Trappmann et al. (Journal of Survey Statistics and Methodology, 2, 58-77, 2014) as well as Perri et al. (Biometrical Journal, 60, 155-173, 2018) allocation designs to allocate long list and short list samples of IST. The properties of all proposed estimators have been derived including optimum replacement policy. The proposed estimators have been mutually compared under the above mentioned allocation designs. The comparison has also been conducted with a direct method. Numerical applications through empirical as well as simplistic simulation has been used to show how the illustrated IST on successive occasions may venture in practical situations.

The Use Ridge Regression for Yield Prediction Models with Multicollinearity Problems (수확예측(收穫豫測) Model의 Multicollinearity 문제점(問題點) 해결(解決)을 위(爲)한 Ridge Regression의 이용(利用))

  • Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.260-268
    • /
    • 1990
  • Two types of ridge regression estimators were compared with the ordinary least squares (OLS) estimator in order to select the "best" estimator when multicollinearitc existed. The ridge estimators were Mallows's (1973) $C_P$-like statistic, and Allen's (1974) PRESS-like statistic. The evaluation was conducted based on the predictive ability of a yield model developed by Matney et al. (1988). A total of 522 plots from the data of the Southwide Loblolly Pine Seed Source study was used in this study. All of ridge estimators were better in predictive ability than the OLS estimator. The ridge estimator obtained by using Mallows's statistic performed the best. Thus, ridge estimators can be recommended as an alternative estimator when multicollinearity exists among independent variables.

  • PDF

Assessing the accuracy of the maximum likelihood estimator in logistic regression models (로지스틱 회귀모형에서 최우추정량의 정확도 산정)

  • 이기원;손건태;정윤식
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.393-399
    • /
    • 1993
  • When we compute the maximum likelihood estimators of the parameters for the logistic regression models, which are useful in studying the relationship between the binary response variable and the explanatory variable, the standard error calculations are usually based on the second derivative of log-likelihood function. On the other hand, an estimator of the Fisher information motivated from the fact that the expectation of the cross-product of the first derivative of the log-likelihood function gives the Fisher information is expected to have similar asymptotic properties. These estimators of Fisher information are closely related with the iterative algorithm to get the maximum likelihood estimator. The average numbers of iterations to achieve the maximum likelihood estimator are compared to find out which method is more efficient, and the estimators of the variance from each method are compared as estimators of the asymptotic variance.

  • PDF

A Random Fuzzy Linear Regression Model

  • Changhyuck Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.287-295
    • /
    • 1998
  • A random fuzzy linear regression model is introduced, which includes both randomness and fuzziness. Estimators for the parameters are suggested, which are derived mainly using properties of randomness.

  • PDF

Nonlinear Regression with Censored Data

  • Shin, D.W.;Bai, D.S.
    • Journal of the Korean Statistical Society
    • /
    • v.12 no.1
    • /
    • pp.46-56
    • /
    • 1983
  • An algorithm based on EM procedure which finds maximum likelihood estimators in a nonlinear regression with censored data is proposed, and asymptotic properties of the estimator are investigated in detail. Some numerical examples are also given.

  • PDF

A Note on the Small-Sample Calibration

  • So, Beong-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.89-97
    • /
    • 1994
  • We consider the linear calibration model: $y_1={\alpha}+{\beta}x_i+{\sigma}{\varepsilon}_i$, i = 1, ${\cdots}$, n, $y={\alpha}+{\beta}x+{\sigma}{\varepsilon}$ where ($y_1$, ${\cdots}$, $y_n$, y) stands for an observation vector, {$x_i$} fixed design vector, (${\alpha}$, ${\beta}$) vector of regression parameters, x unknown true value of interest and {${\varepsilon}_i$}, ${\varepsilon}$ are mutually uncorrelated measurement errors with zero mean and unit variance but otherwise unknown distributions. On the basis of simple small-sample low-noise approximation, we introduce a new method of comparing the mean squared errors of the various competing estimators of the true value x for finite sample size n. Then we show that a class of estimators including the classical and the inverse estimators are consistent and first-order efficient within the class of all regular consistent estimators irrespective of type of measurement errors.

  • PDF

Comparison of Survival Function Estimators for the Cox's Regression Model using Bootstrap Method (Cox 회귀모형(回歸模型)에서 붓스트랩방법(方法)에 의한 생존함수추정량(生存函數推定量)의 비교연구(比較硏究))

  • Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.1-11
    • /
    • 1993
  • The Cox's regression model is frequently used for covariate effects in survival data analysis, But, much of the statistical work has focused on asymptotic behavior so the small sample evaluation has been neglected. In this paper, we compare the small or moderate sample performances of the survival function estimators for the Cox's regression model using bootstrap method. The smoothed PL type estimator and the Link estimator are slightly better than corresponding the PL type estimator and the Nelson type estimator in the sense of the achieved error rates.

  • PDF

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

Adaptive M-estimation in Regression Model

  • Han, Sang-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.859-871
    • /
    • 2003
  • In this paper we introduce some adaptive M-estimators using selector statistics to estimate the slope of regression model under the symmetric and continuous underlying error distributions. This selector statistics is based on the residuals after the preliminary fit L$_1$ (least absolute estimator) and the idea of Hogg(1983) and Hogg et. al. (1988) who used averages of some order statistics to discriminate underlying symmetric distributions in the location model. If we use L$_1$ as a preliminary fit to get residuals, we find the asymptotic distribution of sample quantiles of residual are slightly different from that of sample quantiles in the location model. If we use the functions of sample quantiles of residuals as selector statistics, we find the suitable quantile points of residual based on maximizing the asymptotic distance index to discriminate distributions under consideration. In Monte Carlo study, this adaptive M-estimation method using selector statistics works pretty good in wide range of underlying error distributions.