• Title/Summary/Keyword: regional soil properties

Search Result 67, Processing Time 0.023 seconds

Comparative Study on Sedimentation and Soil Characteristic of Dredged Marine Clays at Coastal Areas (해안지역별 준설점토의 침강 및 토질특성)

  • Lee, Kwang-Yeol;Hwang, Jae-Hong;Jang, Sam-Sik;Gu, Tae-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.922-929
    • /
    • 2004
  • In some port construction, a case of reclamation with dredged soil for land use can be found. Even though this is not a new technology, there are some problems on the test method and analysis. The design parameters are still remained to be solved to get accurate prediction. Sedimentation of particle and self-weight consolidation are the most important design parameters in reclamation by dredged soils. The design parameters are influenced by properties of the physical and sedimentation of dredged soils. This influencing factors can be determined depend on the history of long term sedimentation and particle characteristics. Thus, properties of the sedimentation and consolidation are varies depend on the regional geologic formation. In this paper, three different sites with different regional soil properties will be compared in design parameters of sedimentation and self-weight consolidation.

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

Calculating Soil Quality Index for Biomass Production Based on Soil Chemical Properties

  • Kim, Sung-Chul;Hong, Young Kyu;Lee, Sang Phil;Oh, Seung Min;Lim, Kyung Jae;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.56-64
    • /
    • 2017
  • Soil quality has been regarded as an important factor for maintaining sustainability of ecosystem. Main purpose of this research was i) to select minimum factor for predicting biomass, and ii) to calculate soil quality index for biomass according to soil chemical properties. Result showed that soil pH, electrical conductivity (EC), soil organic matter (SOM), cation exchange capacity (CEC), and available phosphorus are minimum data set for calculating biomass production in soil. Selected representative soil chemical properties were evaluated for soil quality index and rated from 1 to 5 (1 is the best for biomass production). Percentage of each grade in terms of biomass production in national wide was 14.52, 35.23, 33.03, 6.47, 10.75% respectively. Although, only soil chemical properties were evaluated for calculating optimum soil quality, result of this research can be useful to understand basic protocol of soil quality assessment in national wide.

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Evaluating Feasibility of Soil Quality Assessment According to Soil Carbon Contents

  • Kim, Sung-Chul;Hong, Young Kyu;Lee, Sang Phil;Oh, Seung Min;Lim, Kyung Jae;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.65-70
    • /
    • 2017
  • Soil was regarded as infinite resources but recently, soil is considered as invaluable resources that we need to protect and conserve. Main objective of this research was to evaluate soil value in terms of soil carbon contents. Soil was classified into forest, paddy, upland, and grass. Carbon contents in each soil was calculated based on soil chemical properties. Calculated soil carbon contents was ranged $15.31-108.86mg\;kg^{-1}$. Based on soil carbon contents, soil value was assumed adapting economic concepts. Calculated total soil value based on soil carbon contents was about 18.46 trillion won. Among others, carbon contents in forest was the highest and value was assumed 11.95 trillion won followed by paddy field (3.7 trillion won).

A Study on the Correction Factors of Soil Non-linearity Considering Korean Regional Conditions for Seismic Deformation Method Applied to Multi-Utility Tunnels (공동구의 응답변위법 해석 시 국내 특성을 반영한 지반 비선형 보정계수 연구)

  • Choi, Jeong Ho;Yun, Jong Seok;Choo, Yun Wook;Youn, Jun Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • The seismic deformation method is conventionally used as a seismic design for a multi-utility tunnel in Korea. In the seismic deformation method, the soil ground's natural period is one of the most critical factors for calculating the ground displacement using cosine functions. Correction factors for the natural period and shear wave velocity have been used to consider the non-linearity of dynamic soil properties. However, the correction factors have been issued because the correction factors have not been sufficiently studied to consider Korea's regional conditions. This paper aims to evaluate the natural periods for the seismic deformation method considering Korea's ground conditions. Ground response analysis was performed using seven real earthquake records on twelve sites with different soil conditions where actual multi-utility tunnels are installed. As a result, natural periods of the sites were analyzed and new correction factors were proposed according to seismic performance and Korea's regional conditions.

Soil Compaction of Hiking Trails Induced by Human Trampling in Mt. Halla and Darangshiorum (한라산과 다랑쉬오름 등산로의 답압에 의한 토양 압밀현상)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.169-179
    • /
    • 2003
  • The hardness and physical properties of soils were measured in hiking trails of Mt. Halla and Darangshiorum in Jeju Island to examine the characteristics and formative factors of an aquiclude induced by human trampling. The soil hardness, being generally the highest on trails, decreases outward and shows the lowest on adjacent slopes in a natural condition. The bulk density and solid phase also demonstrates a similar tendency, then implying that the aquiclude occurs in the central part of trails. Although the formation of a hard layer in trails is fundamentally attributed to human trampling, the environmental factors such as landform, lithology, soil and vegetation play a role in the occurrence of the aquiclude. Soil compaction varies with the gradient and location of trails which affects a transport and deposition of soil particles to produce a hard layer. Soil compaction also depends on the physical properties of soils including the soil texture largely affected by lithology. Vegetation is not directly related with the formation of a hard layer, but affects its dimensions through an enlargement rate of bare trails depending on the response and resistance of plants to human trampling.

  • PDF

Evaluation of Mechanical Characteristics and Concentration Target Layer Applicability of Silty Sand by Fines Content (실트질 모래의 세립분 함유율에 따른 역학적 특성 및 압밀 대상층 적용성 평가)

  • Jung-Meyon Kim;Min-Seo Kang;Jong-Joo Kim;Seung-Joo Lee;Young-Seok Kim;Chan-Young, Park;Yong-Seong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.37-46
    • /
    • 2023
  • In this paper, the physical properties, stress deformation and strength characteristics, density and permeability characteristics of silty sand (SM) by fines content were analyzed through indoor tests. also based on the results of the indoor tests, a compact analysis was performed according to the content of SM, and the applicability of SM ground to the compacted target layer was evaluated by comparing it with the measurement data of the actual problem site. As a result of indoor tests and compression analysis, SM changed its mechanical properties from sandy soil to viscous soil when the fine particle content was 35% or higher, and using field measurement data, SM was found to have a higher compression tendency than direct subsidence. Therefore, the mechanical characteristics of SM above Fc 35% are considered to be similar to that of viscous soil, which is different from the compression characteristics of the tendency of immediate subsidence to conventional sandy soil, so it is necessary to present the mechanical characteristics of SM through further research. The research findings highlight the importance of considering consolidation settlement in silty sand (SM) when evaluating soft soil conditions. These findings can aid in revising criteria for assessing weak ground conditions by providing essential engineering property data based on varying fines content in silty sand.

Long-Term Investigation of Regional Topographic Effects on Soil Chemical Properties and Heavy Metal Concentrations in Paddy Fields

  • Ahn, Byung-Koo;Kang, Seong-Soo;Shin, Jae-Yeon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Topographic conditions of agricultural fields work as a important factor to identify different soil properties. This study was conducted to investigate the selected soil chemical properties and the concentrations of heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields of different topographic areas at four year intervals from 1999 to 2011. Three-hundred soil sampling sites in the paddy fields were selected from the different topographic areas that were local valley and fans, fluvio-marine deposits, alluvial plains, and diluvial terraces. The mean values of soil pH ranged 5.7~5.8 that were within optimal range for rice cultivation. The mean values of other properties such as soil organic matter (SOM) content, the concentrations of exchangeable cations, $K^+$, $Ca^{2+}$, and $Mg^{2+}$, and available silicate concentration were lower or close to the optimal values, but the mean concentrations of available phosphorus were exceeded the range of optimal value, $80{\sim}120mg\;kg^{-1}$, in many paddy fields. In particular, The concentrations of available phosphorus in the paddy fields of local valley and fans, alluvial plains, and fluvio-marine plains were mostly declined. However, in diluvial terrace areas, the phosphorus concentrations unexpectedly increased; furthermore, they were significantly higher than those in other topographic areas. The mean concentrations of 0.1 M HCl-extractable heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields were slightly and gradually declined during the study years, but the Pb concentrations were not statistically changed. In addition, the concentrations of heavy metals were widely ranged depending on the different sampling sites. Nevertheless, the concentrations of heavy metals were significantly lower than the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (1-region) presented in Soil Environment Conservation Law (SECL).

Numerical Analysis of Effects of the Physical Properties of Soil and Contaminant Materials on In-situ Soil Remediation Using Vertical Drain (토양 및 오염물질의 물성치가 연직배수재에 의한 현장오염정화에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The properties of contaminated soil, contaminants and elapsed time are important considering factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one ($C/C_0$) with time and spatial changes in contaminated area which are embedded with vertical drains. The contaminant concentration ratio ($C/C_0$) is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil, temperature in ground, unit weight and viscosity of contaminants by using FLUSH1 model modified from FLUSH. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation in vertical drain system is the effective diameter of contaminated soil. It also shows that the next important factors are the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants and density of soil, in order. However, the others except the effective diameter of contaminated soil are insignificant to the soil remediation.

  • PDF