• Title/Summary/Keyword: region and texture

Search Result 341, Processing Time 0.022 seconds

Shape and Appearance Repair for Incomplete Point Surfaces (결함이 있는 점집합 곡면의 형상 및 외관 수정)

  • Park, Se-Youn;Guo, Xiaohu;Shin, Ha-Yong;Qin, Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.330-343
    • /
    • 2007
  • In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models' context, or manually from users' selection. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Out experiments show that the unified framework, founded upon the techniques of deformable models and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.

FRIP System for Region-based Image Retrieval (영역기반 영상 검색을 위한 FRIP 시스템)

  • Ko, Byoung-Chul;Lee, Hae-Sung;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • In this paper, we have designed a region-based image retrieval system, FRIP(Finding Region In the Pictures). This system includes a robust image segmentation scheme using color and texture direction and retrieval scheme based on features of each region. For image segmentation, by using a circular filter, we can protect the boundary of round object and merge stripes or spots of objects into body region. It also combines scaled and shifted color coordinate and texture direction. After image segmentation, in order to improve the storage management effectively and reduce the computation time, we extract compact features from each region and store as index. For user interface, by the user specified constraints such as color-care / don't care. scale-care / dont care, shape-care / dont care and location-care / dont care, the overal/ matching score is estimated and the top Ie nearest images are reported in the ascending order of the final score.

  • PDF

Disparity map image Improvement and object segmentation using the Correlation of Original Image (입력 영상과의 상관관계를 이용한 변이 지도 영상의 개선 및 객체 분할)

  • Shin, Dong-Jin;Choi, Min-Soo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.317-318
    • /
    • 2006
  • There are lot of noises and errors in depth map image which is gotten by using a stereo camera. These errors are caused by mismatching of the corresponding points which occur in texture-less region of input images of stereo camera or occlusions. In this paper, we use a method which is able to get rid of the noises through post processing and reduce the errors of disparity values which are caused by the mismatching in the texture-less region of input images through the correlation between the depth map images and the input images. Then we propose a novel method which segments the object by using the improved disparity map images and projections.

  • PDF

Image Retrieval Using Directional Features (방향성 특징을 이용한 이미지 검색)

  • Jung, Ho-Young;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.207-211
    • /
    • 2000
  • For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.

  • PDF

Multi-Frame Super-Resolution of High Frequency with Spatially Weighted Bilateral Total Variance Regularization

  • Lee, Oh-Young;Park, Sae-Jin;Kim, Jae-Woo;Kim, Jong-Ok
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.5
    • /
    • pp.271-274
    • /
    • 2014
  • Bayesian based Multi-Frame Super-Resolution (MF-SR) has been used as a popular and effective SR model. On the other hand, the texture region is not reconstructed sufficiently because it works on the spatial domain. In this study, the MF-SR method was extended to operate on the frequency domain to improve HF information as much as possible. For this, a spatially weighted bilateral total variation model was proposed as a regularization term for a Bayesian estimation. The experimental results showed that the proposed method can recover the texture region more realistically with reduced noise, compared to conventional methods.

Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images (복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합)

  • 정기철
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.175-186
    • /
    • 2004
  • We present a hybrid approach of texture-based method and connected component (CC)-based method for text extraction in complex images. Two primary methods, which are mainly utilized in this area, are sequentially merged for compensating for their weak points. An automatically constructed MLP-based texture classifier can increase recall rates for complex images with small amount of user intervention and without explicit feature extraction. CC-based filtering based on the shape information using NMF enhances the precision rate without affecting overall performance. As a result, a combination of texture and CC-based methods leads to not only robust but also efficient text extraction. We also enhance the processing speed by adopting appropriate region marking methods for each input image category.

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

A Generalized Method for Extracting Characters and Video Captions (일반화된 문자 및 비디오 자막 영역 추출 방법)

  • Chun, Byung-Tae;Bae, Young-Lae;Kim, Tai-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.632-641
    • /
    • 2000
  • Conventional character extraction methods extract character regions using methods such as color reduction, region split and merge and texture analysis from the whole image. Because these methods use many heuristic variables and thresholding values derived from a priori knowledge, it is difficult to generalize them algorithmically. In this paper, we propose a method that can extract character regions using a topographical feature extraction method and a point-line-region extension method. The proposed method can also solve the problems of conventional methods by reducing heuristic variables and generalizing thresholding values. We see that character regions can be extracted by generalized variables and thresolding values without using a priori knowledge of character region. Experimental results show that the candidate region extraction rate is 100%, and the character region extraction rate is over 98%.

  • PDF

Video Segmentation Using DCT and Guided Filter in real time (DCT와 Guided 필터를 이용한 실시간 영상 분류)

  • Shin, Hyunhak;Lee, Zucheul;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.718-727
    • /
    • 2015
  • In this paper, we present a novel segmentation method that can extract new foreground objects from a current frame in real-time. It is performed by detecting differences between the current frame and reference frame taken from a fixed camera. We minimize computing complexity for real-time video processing. First DCT (Discrete Cosine Transform) is utilized to generate rough binary segmentation maps where foreground and background regions are separated. DCT shows better result of texture analysis than previous methods where texture analysis is performed in spatial domain. It is because texture analysis in frequency domain is easier than that in special domain and intensity and texture in DCT are taken into account at the same time. We maximize run-time efficiency of DCT by considering color information to analyze object region prior to DCT process. Last we use Guided filter for natural matting of the generated binary segmentation map. In general, Guided filter can enhance quality of intermediate result by incorporating guidance information. However, it shows some limitations in homogeneous area. Therefore, we present an additional method which can overcome them.