• Title/Summary/Keyword: regenerating genes

Search Result 14, Processing Time 0.032 seconds

EST analysis of regenerating newt retina

  • Hisatomi, Osamu;Hasegawa, Akiyuki;Goto, Tatsushi;Yamamoto, Shintaro;Sakami, Sanae;Kobayashi, Yuko;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.267-268
    • /
    • 2002
  • A vertebrate retina is an organ belonging to the central nerve system (CNS), and is usually difficult to regenerate except at an embryonic stage in life. However, certain species of urodele amphibians, such as newts and salamanders, possess the ability to regenerate a functional retina from retinal pigment epithelial (RPE) cells even as adults. After surgical removal of neural retinas from adult newt eyes, the remaining RPE cells lose their pigment granules, transdifferentiate into retinal progenitor cells, which further differentiate into various retinal neurons, and then finally reform a functional neural network. To understand the molecular mechanisms of CNS regeneration, we attempted to investigate the genes expressing in regenerating newt retina. mRNAs were isolated from regenerating retinas at 18-19 days after the surgical removal of the normal retina, and a cDNA library (regenerating retinal cDNA library) were constructed. Our EST analysis of 112 clones in the regenerating cDNA library revealed that about 70% clones are closely related to the genes previously identified. About 40% clones are housekeeping genes, and about 15% clones encode proteins related to the regulation of gene expression and to the proliferation of the cells. Sequences similar to neural retina- and RPE-specific genes were not detected at all. These results led us to suppose that the regenerating retinal cells are in a state considerably different from those of neither neural retina nor RPE cells.

  • PDF

Suppression Subtractive Hybridization Identifies Novel Transcripts in Regenerating Hydra littoralis

  • Stout, Thomas;McFarland, Trevor;Appukuttan, Binoy
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.286-289
    • /
    • 2007
  • Despite considerable interest in the biologic processes of regeneration and stem cell activation, little is known about the genes involved in these transformative events. In a Hydra littoralis model of regeneration, we employed a rapid shotgun suppression subtractive hybridization strategy to identify genes that are uniquely expressed in regenerating tissue. With an adaptor-PCR based technique, 16 candidate transcripts were identified, 15 were confirmed unique to mRNA isolated from hydra undergoing regeneration. Of these, 6 were undescribed in GenBank and allied expressed sequence tag (EST) databases (GenBank + EMBL + DDBJ + PDB and the Hydra EST database). BLAST analysis of these sequences identified remarkably similar sequences in anonymous ESTs found in a wide variety of animal species.

Effects of (-)-Epigallocatechin-3-gallate on the Release of Pancreatic Enzymes and Expression of Regenerating Genes in Ethanol-injured Murine Pancreatic Primary Acinar Cells (에탄올에 의하여 유도된 마우스 췌장 선포세포의 염증성 손상에서 췌장분비 효소의 활성 및 세포 재생관련 유전자들의 발현에 미치는 EGCG의 영향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1404-1408
    • /
    • 2013
  • (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been shown to have strong antibacterial, antiviral, antioxidant, anti-inflammatory, and chemopreventive effects. However it is unknown whether EGCG can recover alcohol-associated pancreatitis. The aim of this study was to investigate the effects of EGCG on pancreatic enzyme activities and the expressions of pancreatic regenerating related markers, such as adenosine monophosphate-activated protein kinase (AMPK), raf-1 kinase inhibitor protein (RKIP), and Regenerating gene 1 (Reg1), in mice pancreatic primary acinar cells. Our results revealed that activities of ${\alpha}$-amylase and chymotrypsin were significantly increased in the cells treated with ethanol compared to the untreated control cells; however, the increased activities of both enzymes were markedly reduced by pretreatment with EGCG. Phosphorylation of AMPK and total expression of RKIP were decreased in the ethanol-treated primary acinar cells; however, these were both significantly increased in the EGCG-pretreated cells. In addition, when EGCG was treated, expression of Reg1 was markedly increased compared with that of the control or the ethanol-treated primary acinar cells, demonstrating that EGCG can modulate pancreatic regenerating related genes. Therefore, our findings suggest that EGCG may have therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.

Gene Regulations in HBV-Related Liver Cirrhosis Closely Correlate with Disease Severity

  • Lee, Se-Ram;Kim, So-Youn
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.814-824
    • /
    • 2007
  • Liver cirrhosis (LC) is defined as comprising diffuse fibrosis and regenerating nodules of the liver. The biochemical and anatomical dysfunction in LC results from both reduced liver cell number and portal vascular derangement. Although several studies have investigated dysregulated genes in cirrhotic nodules, little is known about the genes implicated in the pathophysiologic change of LC or about their relationship with the degree of decompensation. Here, we applied cDNA microarray analysis using 38 HBsAg-positive LC specimens to identify the genes dysregulated in HBV-associated LC and to evaluate their relation to disease severity. Among 1063 known cancer- and apoptosis-related genes, we identified 104 genes that were significantly up- (44) or down- (60) regulated in LC. Interestingly, this subset of 104 genes was characteristically correlated with the degree of decompensation, called the Pugh-Child classification (20 Pugh-Child A, 10 Pugh-Child B, and 8 Pugh-Child C). Patient samples from Pugh-Child C exhibited a distinct pattern of gene expression relative to those of Pugh-Child A and B. Especially in Pugh-Child C, genes encoding hepatic proteins and metabolizing enzymes were significantly down-regulated, while genes encoding various molecules related to cell replication were up-regulated. Our results suggest that subsets of genes in liver cells correspond to the pathophysiologic change of LC according to disease severity and possibly to hepatocarcinogenesis.

Expression Pattern of labial-like Gene of the Earthworm, Perionyx excavatus (지렁이 labial-like유전자의 발현 양상에 관한 연구)

  • 조성진;이명식;허소영;이종애;박범준;조현주;박순철
    • The Korean Journal of Soil Zoology
    • /
    • v.7 no.1_2
    • /
    • pp.29-34
    • /
    • 2002
  • Hox genes are a family of regulatory gene encoding transcription factor that primarily play a crucial role during development. Several indications suggest their involvement in the control of cell growth and regenration. RT-PCR and souther blot analysis revealed that labial-like gene was increasingly expressed along a spatial gradient in the anterior region of intact worm. During head and tail regeneration, labial-like gene was expressed only in the head region of regenerating body pieces, suggesting that the gene is involved in the anteroposterior patterning in earth-worm. This result could give us information on the significance of Hox genes and the relationship between Hox genes during regeneration.

  • PDF

De novo Regeneration of Fertile Common Bean (Phaseolus vulgaris L.) Plants

  • Albino Margareth M.C.;Vianna Giovanni R.;Falcao Rosana;Aragao Francisco J.L.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • Common bean (Phaseolus vulgaris L.) plants were regenerated via organogenesis from mature embryonic axes, cultured on MS medium supplemented with ildole-3-ecetic acid (IAA) and thidiazuron (TDZ) for one week in the dark. Embryonic axillary regions were excised, longitudinally cut to split the both sides, and cultured for two weeks on MS medium supplemented with IAA and TDZ. The combination 0.5 mg $l^{-1}$ TDZ/0.5 mg $l^{-1}$ IAA presented the higher efficiency in shoot regeneration and the combination 0.5 mg $l^{-1}$ TDZ/0.25 mg $l^{-1}$ IAA presented the higher efficiency in conversion of shoots to plants. Regenerating explants were transferred to MS medium containing 1 mg $l^{-1}$ BAP for shoot development. All elongated shoots were rooted in vitro, presented normal phenotype and produced viable seeds. Histological analysis confirmed the mode of regeneration as de novo shoot organogenesis.

Construction Various Recombiant Plasmids for the Enhancement of Glutathione Production in E. coli. (E. coli에서 글루타치온 생산 증가를 위한 재조합 플라스미드의 구성)

  • 남용석;이세영
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1997
  • In order to enhance glutathione production, various recombinant plasmids containing gshI and/or gshII genes isolated from E. coli K-12 were constructed and introduced into E. coli. Some plasmids contained one to three copies of gshI genes in pBR325 and others contained both gshI and genes for glutathione biosynthesis. $\gamma$-Glutamylcysteine synthetase activities of E, coli strains amplified tandem repeated gshI genes were dependent on the number of inserted gshI genes. The glutathione productivity of E. coli strains harboring various plasmids was investigated using an E. coli acetate kinase reaction as an ATP regenerating system. The glutathione productivity of E. coli strains harboring tandem repeated gshI genes was increased in proportion to the number of inserted gshI genes. By the introduction of gshII gene, the glutathione productivity of the E. coli was increased by two-fold compared with E. coli strain amplified gshI gene only. The enzymatic production of glytathione in E. coli was mainly affected by the increase of $\gamma$-glutamylcysteine synthetase activity. The highest glutathione productivity was obtained in E. coli strains harboring pGH-501 plasmid containing two copies of gshI and copy of gshII genes in pUC8 vector.

  • PDF

Mapping QTLs for Tissue Culture Response of Mature Wheat Embryos

  • Jia, Haiyan;Yi, Dalong;Yu, Jie;Xue, Shulin;Xiang, Yang;Zhang, Caiqin;Zhang, Zhengzhi;Zhang, Lixia;Ma, Zhengqiang
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.323-330
    • /
    • 2007
  • The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of 'Wangshuibai' with 'Nanda2419', which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.

Optimized Protocols for Efficient Plant Regeneration and Gene Transfer in Pepper (Capsicum annuum L.)

  • Mihalka, Virag;Fari, Miklos;Szasz, Attila;Balazs, Ervin;Nagy, Istvan
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.143-149
    • /
    • 2000
  • An Efficient in vitro regeneration system and an optimized Agrobacterium mediated transformation protocol are described, based on the use of young seedling cotyledons of Capsicum annuum L. Optimal regeneration efficiency can be obtained by cultivating cotyledon explants on media containing 4 mg/L benzyladenine and 0.1 mg/L indolacetic acid. The effect of antibiotics used to eliminate Agrobacteria, as well as the toxic level of some generally used selection agents (kanamycin, geneticin, hygromycin, phosphinotricin and methotrexate) in regenerating pepper tissues were determined. To enable the comparison of different selection markers in identical vector background, a set of binary vectors containing the marker genes for NPTII, HPT, DHFR and BAR respectively, as well as the CaMV 35S promoter/enhancer-GUS chimaeric gene was constructed and introduced into four different Agrobacterium host strains.

  • PDF

Effect and mechanism of chitosan-based nano-controlled release system on the promotion of cell cycle progression gene expression (키토산 기반 나노방출제어시스템의 세포주기진행 유전자 발현 증진 효과 및 기전)

  • Lee, Won Joong;Park, Kwang Man;Lee, sungbok Richard;Hwang, Yu Jeong;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.379-394
    • /
    • 2021
  • Purpose. In our previous studies, application of trichloroacetic acid (TCA) to gingival fibroblasts or to canine palatal soft tissue was verified to alter the expression of several genes responsible for cell cycle progression. In order to confirm this effect in a system allowing sequential release of TCA and epidermal growth factor (EGF), expression of various cell cycle genes following the application of the agents, using hydrophobically modified glycol chitosan (HGC)-based nano-controlled release system, was explored in this study. Materials and methods. HGC-based nano-controlled release system was developed followed by loading TCA and EGF. The groups were defined as the control (CON); TCA-loaded nano-controlled release system (EXP1); TCA- and EGF- individually loaded nano-controlled release system (EXP2). At 24- and 48 hr culture, expression of 37 cell cycle genes was analyzed in human gingival fibroblasts. Correlations and the influential genes were also analyzed. Results. Numerous genes such as cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs) and other cell cycle genes were significantly up-regulated in EXP1 and EXP2. Also, cell cycle arrest genes of E2F4, E2F5, and GADD45G were up-regulated but another cell cycle arrest gene SMAD4 was down-regulated. From the multiple regression analysis, CCNA2, CDK4, and ANAPC4 were determined as the most influential factors on the expression of ERK genes. Conclusion. Application of TCA and EGF, using the HGC-based nano-controlled sequential release system significantly up-regulated various cell cycle progression genes, leading to the possibility of regenerating oral soft tissue via application of the proposed system.