• Title/Summary/Keyword: refractive performance

Search Result 136, Processing Time 0.023 seconds

Development and Performance Evaluation of Rotational Strut Segment for Releasing Stress when uninstalled (버팀보 해체시 안전성 확보를 위한 응력 해제용 굴절지지대 개발 및 성능 평가)

  • Park, Cheol-Yong;Ku, Il-Keun;Kim, Hyun-Sook;Yang, Jee-Youn;Kim, Hyung-Oh
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.109-110
    • /
    • 2018
  • Preloading Strut applied during installation of the wall jack, but additionally serves to minimize the displacement of soil pressure acting upon dissolution due to the difficulty. In this study, we developed an index of support for the release of stress to facilitate the dismantling of the strut uninstall. The refractive support the axial force acting on the strut are supportable, is refracted at minimum load, disassembly should be easy. In order to find the optimal shape and structural stability of the refractive support We have performed the numerical analysis and performance test to determine the final model. We carried out model tests and UTM test in order to understand the refractive performance and durability of the refractive support for optimal model. Results of the test UTM is refracted all shot 5 times within a target hit number, it was found that there is no problem of the refractive performance. Further, the results of model experiments, it was found that to ensure sufficient durability more than the performance target value of the pin joint support structure.

  • PDF

Effect of Under and Over Refractive Correction on Visual Acuity Performance using Two Different Charts

  • Chen, Ai-Hong;Shah, Siti Salwa Mohamad;Rosli, Saiful Azlan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.291-295
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of under and over refractive correction on visual acuity performance and the variation of the visual performance measurement using two different visual acuity charts. Methods: Ten young adults, aged between 19 and 25 years old, were recruited. Inclusion criteria: no history of ocular injury or pathology with a best-corrected visual acuity of 6/6 on dominant eye. The over and under refractive corrections were induced using minus and plus spherical ophthalmic lenses in 0.50 D steps up to 3.00 D; as well as using three axis orientations of cylindrical ophthalmic lenses ($45^{\circ}$, $90^{\circ}$ and $180^{\circ}$) in 0.50 D steps. The variation of visual acuity performance measurements was investigated using Bailey-Lovie LogMAR chart and Landolt C chart. Results: The visual acuity changes with lenses were significantly different between two charts [F = 49.15, p < 0.05 with plus spherical ophthalmic lenses and F = 174.38, p < 0.05 with minus spherical ophthalmic lenses]. The visual acuity changes with three different cylindrical axis showed no significant difference between Bailey-Lovie LogMAR chart [F = 2.35, p > 0.05] and Landolt C chart [F = 3.12, p = 0.05]. Conclusions: The over and under refractive correction affected the visual acuity performance differently. The Landolt C chart and Bailey-Lovie LogMAR chart demonstrated variation in measurements.

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers (브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계)

  • Bae, Young-Gyu;Lee, Seung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements (투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링)

  • Kim, Hyeong Seok;Lee, Joocheol;Shin, Myunghun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

Optical Design of a High-numerical-aperture Objective with a Reflective Focal Reducer (반사형 Focal Reducer를 가지는 높은 개구수의 대물렌즈 설계)

  • Jong Ung Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.248-260
    • /
    • 2023
  • A 0.5-numerical-aperture (NA) refractive-reflective objective, composed of a low-NA refractive and a reflective focal reducer, is designed. A 0.25-NA Lister objective is used for the refractive. A two-spherical-mirror system, corrected for spherical aberration, coma, and astigmatism is used for the reflective focal reducer. In spite of high NA, the refractive-reflective objective has an 18-mm working distance and improved imaging performance, compared to the 0.25-NA Lister objective.

Improvement of Brightness in UV Curing Type Prism Sheet by Using Aromatic Groups (방향족 도입에 의한 자외선 경화형 프리즘시트의 휘도 개전)

  • Kim, Dong-Ryoul;Kim, Hyung-Il
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.413-419
    • /
    • 2009
  • As the refractive index of the prism layer becomes higher, the optical performance of the prism sheet gets better and the efficiency of the LCD backlight unit is improved. In order to increase the refractive index of the prism layer, the ultraviolet curing type resins were prepared by mixing high refractive index materials containing aromatic groups and the multi-functional reactive diluents. By using 9,9-bis [4-(2-acryloyloxyethoxy)phenyl] fluorene, the refractive index of the prism layer was increased up to 1.58 and the brightness of the backlight unit was improved. Since the light source used in the backlight unit caused the yellowing in the prism sheet and deteriorated the brightness accordingly, the hindered amine light stabilizer was used to improve the yellowing resistance successfully.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

Refractive index-based soil moisture sensor (굴절률 기반 토양 수분 센서)

  • Sim, Eun-Seon;Hwa, Su-Bin;Jang, Ik-Hoon;Na, Jun-Hee;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.415-419
    • /
    • 2021
  • We developed a highly accurate, yet inexpensive, refractive index (RI)-based soil moisture sensor. To detect the RI, a light guide was set with a light-emitting diode and photodiode. When the air fills the space between the soil particles, most of the incident light is reflected at the interface between the waveguide and the air because of the large RI difference. As the moisture of the soil increases, the macroscopic soil RI increases. This allows incident light to pass through the interface. The intensity of the light reaching the photodiode was simulated according to the change in the soil RI. Using the simulation results, we designed and manufactured a curved glass waveguide. We evaluated the performance of the RI-based soil sensor by comparing it with a commercially available, high-cost and high-performance time-domain reflectometer (TDR). Our sensor was 96% accurate, surpassing the costly TDR sensor.