DOI QR코드

DOI QR Code

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam (Dept. of Computer & Communication Eng., Chungbuk Nat'l Univ.) ;
  • Hwang Eun-Seop (Dept. of Computer & Communication Eng., Chungbuk Nat'l Univ.) ;
  • Shin Chang-Won (Prism Technology Inc.)
  • Received : 2006.02.16
  • Published : 2006.03.01

Abstract

Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

Keywords

References

  1. W. Chao and S. Chi, 'Diffraction properties of windshield laminated photopolymer holograms,' J. Opt., vol. 29, pp. 95-103, 1998 https://doi.org/10.1088/0150-536X/29/2/006
  2. A. Pu and D. Psaltis, 'High-density recording in photopolymer based holographic three-dimensional disks,' Appl. Opt., vol. 35, pp. 2389-2398, 1996 https://doi.org/10.1364/AO.35.002389
  3. W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, 'HOE imaging in Dupont holographic photopolymer,' in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE., vol. 3294, pp. 207-214, 1998 https://doi.org/10.1117/12.304525
  4. J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J. M. Fournier, and P. Hemmer, 'Very thick holographic nonspatial filtering of laser beams,' Opt. Eng., vol. 36, pp. 1700-1705, 1997 https://doi.org/10.1117/1.601365
  5. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, 'Optical photopolymers: design and application,' Adv. Mat., vol. 10, pp. 1219-1224, 1998 https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1219::AID-ADMA1219>3.0.CO;2-D
  6. J. T. Gallo and C. M. Verber, 'Model for the effects of material shrinkage on volume holograms,' Appl. Opt., vol. 33, pp. 6797-6804, 1994 https://doi.org/10.1364/AO.33.006797
  7. L. Dhar, M. G. Schnoes, T. L. Wysocki. H. Bair, M. Schilling, and C. Boyd, 'Temperature induced changes in photopolymer volume holograms,' Appl. Phys. Lett., vol. 73, pp. 1337-1339, 1998 https://doi.org/10.1063/1.122375
  8. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, 'Holographic storage of multiple high capacity digital data pages in thick photopolymer systems,' Opt. Lett., vol. 23, pp. 1710-1712, 1998 https://doi.org/10.1364/OL.23.001710
  9. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, 'Quantitative model of volume hologram formation in photopolymers,' J. Appl. Phys., vol. 81, pp. 5913-5923, 1997 https://doi.org/10.1063/1.364378
  10. J. Park and E. Kim, 'Preparation and holographic recording of an organic-inorganic hybrid type photopolymer film,' J. Kor. Soc. Imaging. Sci, vol. 8 (2002), 22
  11. H. J. Kim, Y. B. Han, W. N. Kim, and E. Kim, 'Electrochromic Poly (aniline-N-butylsulfonate)s and Their Application to Electrochromic devices,' J. Jap. Soc. Colour Mater., vol. 72 (1999), 11 https://doi.org/10.4011/shikizai1937.72.11
  12. W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemicals (Butterworth Heinemann Publications, Oxford (1996)
  13. E. Kim, J. Park, S. Y. Cho, J. H. Kim, and N. Kim, 'Preparation and holographic recording of diarylethene doped photochromic films,' ETRI Journal, vol. 25 (2003), 253 https://doi.org/10.4218/etrij.03.0102.0042
  14. G. Barbastathis and D. Psaltis, 'Volume holographic multiplexing methods,' Holographic Data Storage, pp. 21-62, 2000
  15. Ducdung Do, Junwon An, and Nam Kim 'Gaussian Apodization Technique in Holographic Demultiplexer Based on Photopolymer,' J. Optical Society of Korea, vol. 7, no. 4, pp. 269-274, 2003 https://doi.org/10.3807/JOSK.2003.7.4.269
  16. A. Fimia, F. Mateos, A. Belendenz, R. Mallavia, F. Amat-Guerri, and R. Sastre, 'New photopolymer with tri-functional monomer for holographic application,' Appl. Phys. B., vol. 63, pp. 151-153, 1996 https://doi.org/10.1007/BF01095266
  17. H. Kogelnik, 'Coupled wave theory for thick hologram gratings,' Bell Syst. Tech. J., vol. 48, pp. 2909-2947, 1969 https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

Cited by

  1. Pulse Analyzing System Using Optical Coherence Tomography for Oriental Medical Application vol.50, pp.5, 2011, https://doi.org/10.1143/JJAP.50.057001
  2. Pulse Analyzing System Using Optical Coherence Tomography for Oriental Medical Application vol.50, pp.5R, 2011, https://doi.org/10.7567/JJAP.50.057001
  3. Holographic Solar Energy Concentrator Using Angular Multiplexed and Iterative Recording Method vol.8, pp.6, 2016, https://doi.org/10.1109/JPHOT.2016.2634699
  4. Study on the optimization of cationic ring opening polymerization of silicone-based epoxy monomers for holographic photopolymers vol.17, pp.9, 2009, https://doi.org/10.1007/BF03218924
  5. Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.242