• Title/Summary/Keyword: reflexive module

Search Result 4, Processing Time 0.016 seconds

On Idempotent Reflexive Rings

  • Kim, Jin Yong;Baik, Jong Uk
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.597-601
    • /
    • 2006
  • We introduce in this paper the concept of idempotent reflexive right ideals and concern with rings containing an injective maximal right ideal. Some known results for reflexive rings and right HI-rings can be extended to idempotent reflexive rings. As applications, we are able to give a new characterization of regular right self-injective rings with nonzero socle and extend a known result for right weakly regular rings.

  • PDF

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

MODULE DERIVATIONS ON COMMUTATIVE BANACH MODULES

  • Amini, Massoud;Bodaghi, Abasalt;Shojaee, Behrouz
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.891-906
    • /
    • 2020
  • In this paper, the commutative module amenable Banach algebras are characterized. The hereditary and permanence properties of module amenability and the relations between module amenability of a Banach algebra and its ideals are explored. Analogous to the classical case of amenability, it is shown that the projective tensor product and direct sum of module amenable Banach algebras are again module amenable. By an application of Ryll-Nardzewski fixed point theorem, it is shown that for an inverse semigroup S, every module derivation of 𝑙1(S) into a reflexive module is inner.