• Title/Summary/Keyword: reflection seismic data

Search Result 160, Processing Time 0.024 seconds

AVO Analysis on Gas Hydrates in the Continental Margin off the South shetland Islands, Antarctica (남극 남쉐틀랜드 군도 대륙주변부의 가스수화물 AVO 반응분석)

  • Goo, Kyoung-Mo;Hong, Jong-Kuk;Jin, Young-Keun;Park, Min-Kyu;Nam, Sang-Heon;Lee, Jung-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Geophysical survey has been conducted on the continental margin off the South Shetland Islands aboard R/V Onnuri of KORDI in 1992/1993. About 800-line km of 96-channel reflection data have been acquired. On the seismic section, BSR with strong reflectivity and negative polarity has been found at 700 ms below the sea bottom. BSR is considered as the base of gas hydrates and AVO analysis was performed to study physical properties along BSR. True amplitude recovery and surface consistence amplitude were applied to seismic data and angle gathers were obtained. AVO gradient and AVO intercept are calculated on every CDP gather. Section of AVO intercept show strong reflectivity and negative polarity on BSRs and stronger continuity of BSR than stacked section. Cross plot of P-G indicates that the lower layer below BSR is filled with free gas.

  • PDF

Amplitude Variation Analysis for Deep Sea Seismic Data in the Ulleung Basin, East Sea (동해 울릉분지 심해 탄성파 탐사자료 진폭변화분석)

  • Cheong, Snons;Kim, Youngjun;Kim, Byungyup;Koo, NamHyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.163-170
    • /
    • 2013
  • The amplitude variation with offset of seismic data can detect fluids in the sediment and resolve the petrophysical properties of hydrocarbons in the subsurface. We analyzed and described the amplitude variation in deep sea seismic data obtained from the Ulleung Basin, East Sea. By inspecting seismic CDP-offset and CDP-angle gathers which show a bright reflection event, we decided a target zone for amplitude variation analysis. From the seismic angle gather at the middle of Ulleung Basin, we recognized amplitude increase or decrease versus offset on the intercept-gradient curve. Using the product attribute and Poisson's ratio change attribute computed in terms of intercept with gradient, the top and the base of gas saturated sediments were described. The area of amplitude variation suggestive of the presence of gas saturated sediments is shown at the depth of 3 s traveltime. Anomalous features of seismic amplitude in the Ulleung Basin were classified by the crossplot of intercept and gradient. The background trend of crossplot between intercept and gradient shows an inverse proportional relation that is common for wet sediments. Anomalous amplitudes of Class III fall into the first and the third quadrants on crossplots. We inferred regional gas/water saturated area with the horizontal dimension of 150 m in the Ulleung Basin by cross-section with respect to cross-plot anomaly.

Seismic Reflection Tomography by Cell Parameterization (셀 매개변수에 의한 탄성파 반사주시 토모그래피)

  • Seo, Young-Tak;Shin, Chang-Soo;Ko, Seung-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • In this study, we developed reflection tomography inversion algorithm using Straight Ray Technique (SRT) which can calculate travel time easily and fast for complex geological structure. The inversion process begins by setting the initial velocity model as a constant velocity model that hat only impedance boundaries. The inversion process searches a layer-interface structure model that is able to explain the given data satisfactorily by inverting to minimize data misfit. For getting optimal solution, we used Gauss-Newton method that needed constructing the approximate Hessian matrix. We also applied the Marquart-Levenberg regularization method to this inversion process to prevent solution diverging. The ability of the method to resolve typical target structures was tested in a synthetic salt dome inversion. Using the inverted velocity model, we obtained the migration image close to that of the true velocity model.

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Seismic Data Processing Suited for Stratigraphic Interpretation in the Domi Basin, South Sea, Korea (남해 대륙붕 도미분지 탄성파자료의 층서해석을 고려한 전산처리)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.603-613
    • /
    • 2010
  • The Domi Basin in the South Sea of Korea is located between the Jeju Basin and Ulleung Basins, and is characterized by several sediment sags that are interested to have formed by crustal extension. This paper aims to derive an optimized seismic data processing procedure which helps stratigraphic interpretation of the Domi Basin. In particular, our data processing flow incorporated horizon velocity analysis (HVA) and surface-relative wave equation multiple rejection (SRWEMR) to improve the quality of stack section by enhancing the continuity of reflection events and suppressing peg-leg multiples respectively. As a result of processing procedures in this study, unconformities were recognized in the stack section that defines the early and middle Miocene, Eocene-Oligocene sequences. In addition, the overall quality of the stack section was increased as essential data to investigate the evolution of the basin. The suppression of multiple resulted in the identification of the Cretaceous basement. The data processing scheme evaluated through this study is expected to improve the standardization of processing sequences for seismic data from the Domi and adjacent Sora and north-Sora Basins.

Tectonic Structures of the South Scotia Ridge Adjacent to the Northern Part of the Powell basin, Antarctica (남극 포웰분지 북부인근 남스코시아 해령의 지체구조)

  • Hong, Jong-Kuk;Jin, Young-Keun;Park, Min-Kye;Lee, Joo-Han;Nam, Sang-Heon;Lee, Jong-Ik
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2006
  • Reflection seismic survey has been conducted using R/V Yuzmogeologia of Russia on the area of between northern part of Powell basin and South Scotia Ridge. 48-channel seismic data have been processed using Promax system. Hesperides and Eastern Deep located in the central part of the South Scotia Ridge show similar geological structure comprising two distinct sedimentary layers. The lower layer filled with fault breccia is considered to be formed with the expansion of the deeps. The upper layer is filled with pelagic sediments which implies this layer is formed after the spreading of the deeps has stopped. The south branch of the South Scotia Ridge is characterized by bigger width than the north branch. Topographical depression shown in the south branch is formed by many faults accompanied with the seafloor expansion of Powell basin.

  • PDF

Estimation of gas-hydrate concentrations from amplitude variation with offset (AVO) analysis of gas-hydrate BSRs in the Ulleung Basin, East Sea (동해 울릉분지 해저 모방 반사면의 AVO 분석을 통한 가스하이드레이트 농도 예측)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Ryu, Byong-Jae;Yoo, Dong-Geun;Chung, Bu-Heung;Kang, Nyeon-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.676-679
    • /
    • 2009
  • The bottom-simulating reflector (BSR) is the most commonly observed seismic indicator of gas hydrate in the Ulleung Basin, East Sea. We processed ten representative seismic reflection profiles, selected from a large data set, for amplitude variation with offset (AVO) analysis of the BSR to estimate gas-hydrate concentrations. First, BSRs were divided into five groups based on their seismic amplitudes and associated sediment types: (1) very high-amplitude BSRs in turbidite/hemipelagic sediments, (2) high-amplitude BSRs in debris-flow deposits, (3) moderate-amplitude BSRs in turbidite/hemipelagic sediments, (4) very low-amplitude BSRs in debris-flow deposits, and (5) very low-amplitude BSRs in seismic chimneys. The AVO responses of the group 1 and 3 BSRs are characterized by a rapid decrease and a relatively slow decrease in magnitude with offset, respectively. The AVO response of the group 2 BSR is characterized by a relatively slow increase in magnitude with offset. The AVO responses of the groups 4 and 5 BSRs are characterized by a flat AVO with very small zero-offset amplitude. Theoretical AVO curves, based on the three-phase Biot theory, suggest that the group 1 and 3 BSRs may be related to high (> 40%) concentrations of gas hydrate whereas the group 2 BSRs may indicate low (< 20%) concentrations of gas hydrate. The AVO responses of the group 4 and 5 BSRs cannot be compared with the theoretical models because of their very small zero-offset amplitudes. The comparison of the AVO response of the BSR at the UBGH-04 well with theoretical models suggests about 10% gas-hydrate concentration above the gas-hydrate stability zone.

  • PDF

Analysis of Hydrocarbon Trap in the Southwestern Margin of the Ulleung Basin, East Sea (동해 울릉분지 남서주변부의 탄화수소 트랩 분석)

  • Lee, Minwoo;Kang, Moo-Hee;Yoon, Youngho;Yi, Bo-Yeon;Kim, Kyong-O;Kim, Jinho;Park, Myong-ho;Lee, Keumsuk
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.301-312
    • /
    • 2015
  • A commercial gas field was found in the southwestern continental shelf of the Ulleung Basin, East Sea in the late 1990s. To develop additional gas field, an exploration well was drilled through the coarse infill of submarine canyon near the gas field, but it was uneconomic to develop hydrocarbons. Using newly acquired deep seismic reflection and previous well data, we have identified additional geological structure which has hydrocarbon potentials below submarine canyons in the southwestern margin of the basin. Based on the interpretation of the deep seismic reflection and well data, the sequences of the study area can be classified into the syn-rift megasequence(MS1), post-rift megasequence(MS2), syn-compressional megasequence(MS3), and post-compressional megasequence(MS4) in relation to the tectonic events. MS1, deposited simultaneously with the basin formation before the middle Miocene, is characterized by chaotic seismic facies with low- to moderate-amplitude and low frequency reflections. MS2 comprises laterally continuous, low- to moderate-amplitude reflections, showing progradational stacking patterns due to high rates of sediment supply during basin expansion in the middle Miocene. MS3 is mainly composed of continuous reflections with high amplitude and moderate- to high-frequency which are interpreted as coarse-grained sediments. The coarse-grained sediments of MS3 sequence is widely truncated by several submarine canyons which filled with fine-grained sediment of MS4 to form a stratigraphic trap of hydrocarbon. Therefore, the reservoir and seal of the hydrocarbon trap in the study area are coarse-grained sediment of MS3 and submarine canyon filled with fine-grained sediment of MS4, respectively. A flat-spot seismic anomaly, which may indicate the presence of hydrocarbon, is observed within the stratigraphic trap.

A Case Study on the Data Processing to Enhance the Resolution of Chirp SBP Data (Chirp SBP 자료 해상도 향상을 위한 전산처리연구)

  • Kim, Young-Jun;Kim, Won-Sik;Shin, Sung-Ryul;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2011
  • Chirp sub-bottom profilers (SBP) data are comparatively higher-resolution data than other seismic data and it's raw signal can be used as a final section after conducting basic filtering. However, Chirp SBP signal has possibility to include various noise in high-frequency band and to provide the distorted image for the complex geological structure in time domain. This study aims at the goal to establish the workflow of Chirp SBP data processing for enhanced image and to analyze the proper parameters for the domestic continental shelf. After pre-processing, we include the dynamic S/N filtering to eliminate the high-frequency component noise, the dip scan stack to enhance the continuity of reflection events and finally the post-stack depth migration to correct the distorted structure on the time domain sections. We demonstrated our workflow on the data acquired by domestically widely used equipments and then we could obtain the improved seismic sections of depth domain. This workflow seems to provide the proper seismic section to interpretation when applied to data processing of Chirp SBP that are largely used for domestic acquisition.

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.