• Title/Summary/Keyword: reflection energy

Search Result 646, Processing Time 0.029 seconds

Study on the Applicability of Reflection Method using Ultrasonic Sweep Source for the Inspection of Tunnel Lining Structure - Physical Modeling Approach - (터널 지보구조 진단을 위한 초음파 스윕 발생원의 반사법 응용 가능성 연구 - 모형실험을 중심으로 -)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.167-174
    • /
    • 2001
  • Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.

  • PDF

Optimizing Surface Reflectance Properties of Low Cost Multicrystalline EFG Ribbon-silicon (저가 다결정 EFG 리본 웨이퍼의 표면 반사도 특성 최적화)

  • Kim, Byeong-Guk;Lee, Yong-Koo;Chu, Hao;Oh, Byoung-Jin;Park, Jae-Hwan;Lee, Jin-Seok;Jang, Bo-Yun;An, Young-Soo;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2011
  • Ribbon silicon solar cells have been investigated because they can be produced with a lower material cost. However, it is very difficult to get good texturing with a conventional acid solution. To achieve high efficiency should be minimized for the reflectance properties. In this paper, acid vapor texturing and anti-reflection coating of $SiN_x$ was applied for EFG Ribbon Si Wafer. P-type ribbon silicon wafer had a thickness of 200 ${\mu}m$ and a resistivity of 3 $\Omega-cm$. Ribbon silicon wafers were exposed in an acid vapor. Acid vapor texturing was made by reaction between the silicon and the mixed solution of HF : $HNO_3$. After acid vapor texturing process, nanostructure of less than size of 1 ${\mu}m$ was formed and surface reflectance of 6.44% was achieved. Reflectance was decreased to 2.37% with anti-reflection coating of $SiN_x$.

Effect of a SiO2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors

  • Zumuukhorol, Munkhsaikhan;Khurelbaatar, Zagarzusem;Kim, Jong-Hee;Shim, Kyu-Hwan;Lee, Sung-Nam;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • The interdigitated germanium (Ge) meta-lsemiconductor-metal (MSM) photodetectors (PDs) with and without an $SiO_2$ anti-reflection (AR) layer was fabricated, and the effect of $SiO_2$ AR layer on their optoelectronic response properties were investigated in detail. The lowest reflectance of 15.6% at the wavelength of 1550 nm was obtained with a $SiO_2$ AR layer with a thickness of 260 nm, which was in a good agreement with theoretically calculated film thickness for minimizing the reflection of Ge surface. The Ge MSM PD with 260 nm-thick $SiO_2$ AR layer exhibited enhanced device performance with the maximum values of responsivity of 0.65 A/W, the quantum efficiency of 52.2%, and the detectivity of $2.49{\times}10^9cm\;Hz^{0.5}W^{-1}$ under the light illumination with a wavelength of 1550 nm. Moreover, time-dependent switching analysis of Ge MSM PD with 260 nm- thick $SiO_2$ AR layer showed highest on/off ratio with excellent stability and reproducibility. All this investigation implies that 260 nm-thick $SiO_2$ AR layer, which is effective in the reduction in the reflection of Ge surface, has a great potential for Ge based optoelectronic devices.

Two-dimensional model simulation for reflectance of single crystalline silicon solar cell (단결정 실리콘 태양전지 2차원 모델의 반사율 시뮬레이션)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.237-242
    • /
    • 2012
  • At present, crystalline solar cells take up a significant percentage of the solar industry. The ways of increasing the efficiency of crystalline solar cell are texturing and AR(Anti-Reflection) coating, and the purpose of these technologies is to increase the amount of available light on the solar cell by reducing the reflectivity. The reflectance of crystalline silicon solar cell combined with such technologies will be able to predict using the proposed simulation in this paper. The simulation algorithm was made using MATLAB, and it is a combination of the theories of reflection in textured wafer and in anti-reflection coated wafer. The simulation results were divided into three wavelength band and were compared with actual reflectance measured by a spectrometer. The wavelength band from 300 to 380 was named ultraviolet region and the wavelength band from 380 to 780 is named visible region. Finally, the wavelength band from 780 to 1200 named infrared region. When compared with measured reflection data, the simulation results had a small error from 0.4 to 0.5[%] in visible region. The error occurred in the rest two regions is larger than visible region. The extreme error occurred the infrared region is due to internal reflection effect, but in the ultraviolet region, the rationale on reduction phenomenon of reflectance occurred in small range did not proved. If these problem will be solve, this simulation will have high reliability more than now and be able to predict the reflectance of solar cells.

  • PDF

Effect of Higher Order Form Factors on the Prediction of Room Acoustics by Extended Radiosity Method (확장 라디오시티법에 의한 실내음향 예측에 있어 고차 형태 계수의 영향)

  • 이희원;고일두;오양기;두세진;정대업
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2003
  • Numerous investigations have demonstrated that diffused reflection is one of the most important factors in predicting room acoustics by computer simulation. Recent studies have suggested several computational algorithms in order to account for diffused reflections in the ray tracing or beam tracing method. In this study, a computational algorithm for the calculation of diffuse sound reflections in the image method is suggested and a computer simulation system is developed based on the suggested algorithm. The methodology adopted in our computer simulation system is similar to the extended radiosity method, which is developed for the computer graphics. In a real room, sound energy is reflected in a partially diffused manner which results in four reflection combinations: diffuse-diffuse, specular-specular, diffuse-specular and specular-diffuse. In this study, higher order form factor is introduced to handle the four types of reflection combinations so that the partially diffused reflection could be modeled. In this paper, the concept of extended radiosity method is described and the approximate method of calculating higher order form factor is suggested. Finally, the effect of higher order form factors on the simulation of reverberation time is investigated.

Energy Loss Coefficient of Waves Considering Thickness of Perforated Wall (유공벽의 두께를 고려한 파의 에너지손실계수)

  • Yoon, Sung-Bum;Lee, Jong-In;Nam, Doo-Hyun;Kim, Seon-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • In the present study extensisve numerical experiments are conducted using the CFD code, FLUENT, to investigate the energy dissipation due to perforated walls for various wall-thickness and flow conditions. A new empirical formula for energy loss coefficient considering the effect of the thickness of perforated wall is obtained based on the results of computational experiments. It is found that the energy loss coefficient decreases as the wall-thickness increases and the maximum coefficient reduction reaches upto 40% of the value calculated using the conventional formulas for the sharp-crested orifice. To check the validity of the new formula the reflection coefficient of waves due to perforated wall is evaluated and compared with the results of existing theories and hydraulic experiments. The result shows that the new formula is superior to the conventional ones.

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers (다채널 체적식 태양열 흡수기에서 열전달 수치해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1383-1389
    • /
    • 2011
  • The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails.

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.

A Simulation of Photocurrent Loss by Reflectance of the Front Glass and EVA in the Photovoltaic Module (전면 유리와 EVA의 광 반사에 의한 PV모듈의 광전류 손실 예측 시뮬레이션)

  • Lee, Sang-Hun;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.76-82
    • /
    • 2013
  • The solar cell is a device to convert light energy into electric, which supplies power to the external load when exposed to the incident light. The photocurrent and voltage occurred in the device are significant factors to decide the output power of solar cells. The crystalline silicon solar cell module has photocurrent loss due to light reflections on the glass and EVA(Ethylene Vinyl Acetate). These photocurrent loss would be a hinderance for high-efficiency solar cell module. In this paper, the quantitative analysis for the photocurrent losses in the 300-1200 wavelength region was performed. The simulation method with MATLAB was used to analyze the reflection on a front glass and EVA layer. To investigate the intensity of light that reached solar cells in PV(Photovoltaic) module, the reflectance and transmittance of PV modules was calculated using the Fresnel equations. The simulated photocurrent in each wavelength was compared with the output of real solar cells and the manufactured PV module to evaluate the reliability of simulation. As a result of the simulation, We proved that the optical loss largely occurred in wavelengths between 300 and 400 nm.