• Title/Summary/Keyword: refinery process

Search Result 78, Processing Time 0.03 seconds

Characteristics of Oil Shale as Unconventional Oil Resources (비재내형(非在來型) 원유(原油) 자원(資源)으로서의 오일셰일 특성(特性) 고찰(考察))

  • Na, Jeong-Geol;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.62-67
    • /
    • 2008
  • Oil shale is a sedimentary rock that contains organic compounds called kerogen that are released as petroleum-like liquids by retorting. In order to evalute oil shale as alternative oil resources, the physical properties of oil shale samples from US and Russia were investigated and Fischer assays were carried out. Thermogravimetric analysis shows that thermal degradation of oil shale consisted of two stage processes, with hydrocarbon release from kerogen followed by $CO_2$ release by carbonate decomposition. Organic compounds in oil shale have an high hydrogen/carbon ratio, and therefore liquid hydrocarbons could be obtained easily. Shale oil yields from Russian and US oil shales by Fischer assay were 12.7% and 18.5%, respectively. The density and boiling point of shale oils are higher than that of Middle East crude oil, indicating that further upgrading processes are necessary for refinery. On the other hands, sulfur contents are relatively low, and the amounts of Vanadium and Nickel are extremely small in shale oil. It was found that paraffins were rich in US shale oil while main components of Russian shale oil were oxygenated hydrocarbons.

Degradation of Aqueous Monoethanolamine Absorbent (모노에탄올아민 흡수제의 열화특성 분석)

  • Cho, Youngmin;Nam, Sung-Chan;Yoon, Yeo-Il;Moon, Sungjun;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.195-199
    • /
    • 2010
  • The reversible chemical absorption using MEA (monoethanolamine), one of alkanolamine, is generally used as a conventionally method for $CO_{2}$ capture. Even MEA absorbent has excellent reactivity with $CO_{2}$, it has been known to have the decrease of absorption capacity caused by $CO_{2}$, $O_{2}$ or other acid gases in flue gas, corrosion and thermal degradation. In this study, MEA solutions degraded in the steam reforming process of refinery used and the absorption performance were compared for the used of conventional MEA solution. In case of 30 wt% MEA and mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ, the absorption capacities were $0.5365mol-CO_{2}$/mol-absorbent and $0.5939mol-CO_{2}$/mol-absorbent respectively. PZ added thermally degraded absorbent showed the enhanced absorption capacity. On the contrary, the absorption rates were $1.1610kg_{f}/cm^2{\cdot}min$ for 30 wt% MEA, $0.5310kg_{f}/cm^2{\cdot}min$ for mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ and $0.3525kg_{f}/cm^2{\cdot}min$ for 30 wt% thermally degraded absorbent only. The absorption rates of PZ added thermally degraded absorbent was higher than that of thermally degraded absorbent only. Therefore, it can be confirmed that thermally degraded absorbent can be reused as an absorbent for $CO_{2}$ by the addition of suitable additives.

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -I. Physico-chemical and Mineralogical Characteristics (급랭광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -I. 급랭광재(急冷鑛滓)의 특성(特性))

  • Shin, Jae-Sung;Lim, Dong-Kyu;Kim, Maun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.343-346
    • /
    • 1983
  • This paper was prepared to characterize a physico-chemical and mineralogical examination on blast furnace slag as a source of silicate fertilizer, which was quenched with high pressure water stream in process of iron refinery at Pohang Iron and Steel Manufacturing Inc. Quenched slag was more coarse in particle size compared to present commercial silicate fertilizer milled from air-cooled slag and mostly generated in size of 1 to 2 mm. The total chemical composition of quenched and air-cooled slags was same but mineralogical composition was quite different. The former was composed of amorphous materials resulting in more soluble silica content, however, the latter contained dominantly crystalline minerals such as akermanite, gehlenite and wollastonite which meant less soluble ones. Latent cementing property and angular surface of gain of the slag made it difficult to apply the slag directly, however, it could be used as a source of silicate fertilizer and soil ammendment.

  • PDF

A Study on Cation Extraction and Impurity Separation in Slag (슬래그 내 양이온 추출 및 불순물 분리 연구)

  • Lee, Ye Hwan;Kang, Hyerin;Jang, Younghee;Lee, Si-Jin;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.311-315
    • /
    • 2019
  • The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF