• 제목/요약/키워드: refined theory

검색결과 285건 처리시간 0.023초

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

A new simple shear and normal deformations theory for functionally graded beams

  • Bourada, Mohamed;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.409-423
    • /
    • 2015
  • In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (${\varepsilon}_Z{\neq}0$) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory

  • Bouderba, Bachir
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.311-325
    • /
    • 2018
  • This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing higher order shear deformation theories that contain more number of unknowns.

A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates

  • Fahsi, Asmaa;Tounsi, Abdelouahed;Hebali, Habib;Chikh, Abdelbaki;Adda Bedia, E.A.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.385-410
    • /
    • 2017
  • This work presents a simple and refined nth-order shear deformation theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on elastic foundation. The proposed refined nth-order shear deformation theory has a new displacement field which includes undetermined integral terms and contains only four unknowns. Governing equations are obtained from the principle of minimum total potential energy. A Navier type analytical solution methodology is also presented for simply supported FG plates resting on elastic foundation which predicts accurate solution. The accuracy of the present model is checked by comparing the computed results with those obtained by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed theory can achieve the same accuracy of the existing HSDTs which have more number of variables.

Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method

  • Bouazza, Mokhtar;Becheri, Tawfiq;Boucheta, Abderrahmane;Benseddiq, Noureddine
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.257-270
    • /
    • 2019
  • The purpose of this work is to analyze the bending behavior of laminated composite plates using the refined fourvariable theory and the finite element method approach using an ANSYS 12 computational code. The analytical model is based on the multilayer plate theory of shear deformation of the nth-order proposed by Xiang et al 2011 using the theory principle developed by Shimpi and Patel 2006. Unlike other theories, the number of unknown functions in the present theory is only four, while five or more in the case of other theories of shear deformation. The formulation of the present theory is based on the principle of virtual works, it has a strong similarity with the classical theory of plates in many aspects, it does not require shear correction factor and gives a parabolic description of the shear stress across the thickness while filling the condition of zero shear stress on the free edges. The analysis is validated by comparing results with those in the literature.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory

  • Beldjelili, Youcef;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.755-786
    • /
    • 2016
  • The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material (S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable refined plate theory. The material characteristics are distributed within the thickness direction according to the two power law variation in terms of volume fractions of the constituents of the material. By employing a four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected without utilizing shear correction factors. The number of independent variables of the current formulation is four, as against five in other shear deformation models. The governing equations are deduced based on the four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results of this work are compared with those of other shear deformation models. Various numerical examples introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated.

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

개선된 판이론을 이용한 회전하는 복합재료 적층판의 비선형 진동해석 (Nonlinear Vibration Analysis of Rotating Composite Plates Based on a Refined Plate Theory)

  • 나형진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.173-176
    • /
    • 1997
  • A refined plate theory including the effects of transverse shearing is used to predict the free vibration frequencies, mode shapes and stress distributions in spinning laminated composite plates. In this theory, the displacements are expressed by trigonometric series representation through the thickness. In the series for the displacements only the first few terms are retained. The model is validated by comparing the results for isotropic plates with those available in the literature.

  • PDF