• Title/Summary/Keyword: refined simple shear deformation theory

Search Result 40, Processing Time 0.016 seconds

Analyse of the behavior of functionally graded beams based on neutral surface position

  • Hadji, Lazreg;Bedia, El Abbes Adda
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.703-717
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Mechanical and thermal stability investigation of functionally graded plates resting on visco-Pasternak foundation

  • Samira Hassiba Tagrara;Mohamed Mehdi hamri;Mahmoud Mohamed Selim Saleh;Mofareh Hassan Ghazwani;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.839-856
    • /
    • 2023
  • This work presents a simple four-unknown refined integral plate theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on Visco-Pasternak foundations. The proposed refined high order shear deformation theory has a new displacement field which includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Governing equations are deduced from the principle of minimum total potential energy and a Navier type analytical solution is adopted for simply supported FG plates. The Visco-Pasternak foundations is considered by adding the impact of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The accuracy of the present model is demonstrated by comparing the computed results with those available in the literature. Some numerical results are presented to show the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the mechanical and thermal buckling behaviors of FG plates.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir;Abdelmadjid, Cheikh
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.369-380
    • /
    • 2018
  • In this research work, nonlinear thermal buckling behavior of functionally graded (FG) plates is explored based a new higher-order shear deformation theory (HSDT). The present model has just four unknowns, by using a new supposition of the displacement field which enforces undetermined integral variables. A shear correction factor is, thus, not necessary. A power law distribution is employed to express the disparity of volume fraction of material distributions. Three kinds of thermal loading, namely, uniform, linear, and nonlinear and temperature rises over z-axis direction are examined. The non-linear governing equations are resolved for plates subjected to simply supported boundary conditions at the edges. The results are approved with those existing in the literature. Impacts of various parameters such as aspect and thickness ratios, gradient index, type of thermal load rising, on the non-dimensional thermal buckling load are all examined.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

  • Sellam, Souad;Draiche, Kada;Tlidji, Youcef;Addou, Farouk Yahia;Benachour, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Nonlinear thermoelastic analysis of FGM thick plates

  • Bouhlali, Malika;Chikh, Abdelbaki;Bouremana, Mohammed;Kaci, Abdelhakim;Bourada, Fouad;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.439-457
    • /
    • 2019
  • In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.

Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory

  • Ayache, Belqassim;Bennai, Riadh;Fahsi, Bouazza;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • A free vibration analysis and wave propagation of functionally graded porous beams has been presented in this work using a high order hyperbolic shear deformation theory. Unlike other conventional shear deformation theories, a new displacement field that introduces indeterminate integral variables has been used to minimize the number of unknowns. The constituent materials of the beam are assumed gradually variable along the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The variation of the pores in the direction of the thickness influences the mechanical properties. It is therefore necessary to predict the effect of porosity on vibratory behavior and wave velocity of FG beams in this study. A new function of the porosity factor has been developed. Hamilton's principle is used for the development of wave propagation equations in the functionally graded beam. The analytical dispersion relationship of the FG beam is obtained by solving an eigenvalue problem. Illustrative numerical examples are given to show the effects of volume fraction distributions, beam height, wave number, and porosity on free vibration and wave propagation in a functionally graded beam.