DOI QR코드

DOI QR Code

Nonlinear thermoelastic analysis of FGM thick plates

  • Bouhlali, Malika (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Chikh, Abdelbaki (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Bouremana, Mohammed (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Bourada, Fouad (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Belakhdar, Khalil (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
  • Received : 2019.07.01
  • Accepted : 2019.10.05
  • Published : 2019.10.25

Abstract

In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.

Keywords

References

  1. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
  2. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
  3. Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  4. Akbas, S.D. (2018), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
  5. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://doi.org/10.12989/csm.2019.8.3.259.
  6. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  7. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123(4), 296. https://doi.org/10.1007/s00339-017-0854-0.
  8. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  9. Avcar, M. and Alwan, A.S. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-127. http://dx.doi.org/10.24107/ijeas.322884.
  10. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  11. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  12. Bakhti K., Kaci A., Bousahla A.A., Houari M.S.A., Tounsi A. and Adda Bedia E.A., (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. http://dx.doi.org/10.12989/scs.2013.14.4.335.
  13. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
  14. Bensaid, I., Bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., 27(6), 369-380. https://doi.org/10.12989/was.2018.27.6.369.
  15. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
  16. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  17. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.
  18. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  19. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  20. Ghayesh, M.H. and Farokhi, H. (2018), "Bending and vibration analyses of coupled axially functionally graded tapered beams", Nonlin. Dyn., 91(1), 17-28. https://doi.org/10.1007/s11071-017-3783-8.
  21. Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.
  22. Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.
  23. Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Modell., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  24. Kaci, A., Bakhti, K., Hebali, H., Tounsi, A. and Adda Bedia, E.A. (2013a), "Mathematical solution for nonlinear cylindrical bending of sigmoid functionally graded plates", J. Appl. Mech. Tech. Phys., 54(1), 124-131. https://doi.org/10.1134/S002189441301015X.
  25. Kaci, A., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A (2014), "Nonlinear cylindrical bending analysis of exponential functionally graded plates with variable thickness", Steel Compos. Struct., 16(4), 339-356. http://dx.doi.org/10.12989/scs.2014.16.4.339.
  26. Kaci, A., Draiche, K., Zidi, M., Houari, M.S.A. and Tounsi, A. (2013b), "An efficient and simple refined theory for nonlinear bending analysis of functionally graded sandwich plates", J. Appl. Mech. Tech. Phys., 54(5), 847-856. https://doi.org/10.1134/S0021894413050180.
  27. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  28. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
  29. Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Pressure Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
  30. Katariya, P. and Panda, S. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
  31. Katariya, P. and Panda, S. (2019b), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  32. Katariya, P., Hirwani, C.K. and Panda, S. (2018), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.
  33. Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  34. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  35. Li, D., Deng, Z., Chen, G., Xiao, H. and Zhu, L. (2017), "Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core", Compos. Struct., 169, 29-41. https://doi.org/10.1016/j.compstruct.2017.01.026.
  36. Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.
  37. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.
  38. Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.
  39. Mantari J.L., Oktem A.S. and Guedes Soares C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
  40. Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  41. Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  42. Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  43. Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A. and Ford R.G., (1999), Functionally Graded Materials, Design, Processing and Applications, Kluwer Academic Publishers, Netherlands.
  44. Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 601-621. https://doi.org/10.12989/sem.2019.70.5.601.
  45. Nguyen-Xuan H., Tran L.V., Thai C.H., Kulasegaram S. and Bordas S.P.A., (2014), "Isogeometric analysis of functionally graded plates using a refined plate theory", Compos. Part B Eng., 64, 222-234. https://doi.org/10.1016/j.compositesb.2014.04.001.
  46. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  47. Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties - a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
  48. Ramos, I.A., Mantari, J.L., Pagani, A. and Carrera, E. (2016), "Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates", J. Therm. Stresses, 39(7), 835-853. https://doi.org/10.1080/01495739.2016.1189771.
  49. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  50. Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  51. Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00836-8.
  52. Siddiqui, F. (2015), "Extended higher order theory for sandwich plates of arbitrary aspect ratio", Ph.D. Thesis, Georgia Institute of Technology, Georgia, Atlanta, U.S.A.
  53. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  54. Talha, M. and Singh, B.N. (2011), "Nonlinear mechanical bending of functionally graded material plates under transverse loads with various boundary conditions", Int. J. Model. Simul. Sci. Comput., 2(2), 237-258. https://doi.org/10.1142/S1793962311000451.
  55. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
  56. Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
  57. Tornabene, F., Brischetto, S., Fantuzzi, N. and Bacciocchi, M. (2016), "Boundary conditions in 2D numerical and 3D exact models for cylindrical bending analysis of functionally graded structures", Shock Vib., 114-129. http://dx.doi.org/10.1155/2016/2373862.
  58. Tuma, J.J. (1970), Engineering Mathematics Handbook, Definitions, Theorems, Formulas, Tables, McGraw-Hill Inc., New York, U.S.A.
  59. Yang, J. and Shen, H.S. (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos. Part B, 34(2), 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5.