References
- Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
- Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.
- Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas, S.D. (2018), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.
- Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://doi.org/10.12989/csm.2019.8.3.259.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123(4), 296. https://doi.org/10.1007/s00339-017-0854-0.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Avcar, M. and Alwan, A.S. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-127. http://dx.doi.org/10.24107/ijeas.322884.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
- Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
- Bakhti K., Kaci A., Bousahla A.A., Houari M.S.A., Tounsi A. and Adda Bedia E.A., (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. http://dx.doi.org/10.12989/scs.2013.14.4.335.
- Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.
- Bensaid, I., Bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., 27(6), 369-380. https://doi.org/10.12989/was.2018.27.6.369.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
- Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.
- Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
- Ghayesh, M.H. and Farokhi, H. (2018), "Bending and vibration analyses of coupled axially functionally graded tapered beams", Nonlin. Dyn., 91(1), 17-28. https://doi.org/10.1007/s11071-017-3783-8.
- Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.
- Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.
- Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Modell., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
- Kaci, A., Bakhti, K., Hebali, H., Tounsi, A. and Adda Bedia, E.A. (2013a), "Mathematical solution for nonlinear cylindrical bending of sigmoid functionally graded plates", J. Appl. Mech. Tech. Phys., 54(1), 124-131. https://doi.org/10.1134/S002189441301015X.
- Kaci, A., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A (2014), "Nonlinear cylindrical bending analysis of exponential functionally graded plates with variable thickness", Steel Compos. Struct., 16(4), 339-356. http://dx.doi.org/10.12989/scs.2014.16.4.339.
- Kaci, A., Draiche, K., Zidi, M., Houari, M.S.A. and Tounsi, A. (2013b), "An efficient and simple refined theory for nonlinear bending analysis of functionally graded sandwich plates", J. Appl. Mech. Tech. Phys., 54(5), 847-856. https://doi.org/10.1134/S0021894413050180.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
- Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007
- Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Pressure Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.
- Katariya, P. and Panda, S. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.
- Katariya, P. and Panda, S. (2019b), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
- Katariya, P., Hirwani, C.K. and Panda, S. (2018), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.
- Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
- Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
- Li, D., Deng, Z., Chen, G., Xiao, H. and Zhu, L. (2017), "Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core", Compos. Struct., 169, 29-41. https://doi.org/10.1016/j.compstruct.2017.01.026.
- Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.
- Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.
- Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.
- Mantari J.L., Oktem A.S. and Guedes Soares C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.
- Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
- Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
- Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
- Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A. and Ford R.G., (1999), Functionally Graded Materials, Design, Processing and Applications, Kluwer Academic Publishers, Netherlands.
- Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 601-621. https://doi.org/10.12989/sem.2019.70.5.601.
- Nguyen-Xuan H., Tran L.V., Thai C.H., Kulasegaram S. and Bordas S.P.A., (2014), "Isogeometric analysis of functionally graded plates using a refined plate theory", Compos. Part B Eng., 64, 222-234. https://doi.org/10.1016/j.compositesb.2014.04.001.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
- Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties - a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.
- Ramos, I.A., Mantari, J.L., Pagani, A. and Carrera, E. (2016), "Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates", J. Therm. Stresses, 39(7), 835-853. https://doi.org/10.1080/01495739.2016.1189771.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00836-8.
- Siddiqui, F. (2015), "Extended higher order theory for sandwich plates of arbitrary aspect ratio", Ph.D. Thesis, Georgia Institute of Technology, Georgia, Atlanta, U.S.A.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Talha, M. and Singh, B.N. (2011), "Nonlinear mechanical bending of functionally graded material plates under transverse loads with various boundary conditions", Int. J. Model. Simul. Sci. Comput., 2(2), 237-258. https://doi.org/10.1142/S1793962311000451.
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.
- Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.
- Tornabene, F., Brischetto, S., Fantuzzi, N. and Bacciocchi, M. (2016), "Boundary conditions in 2D numerical and 3D exact models for cylindrical bending analysis of functionally graded structures", Shock Vib., 114-129. http://dx.doi.org/10.1155/2016/2373862.
- Tuma, J.J. (1970), Engineering Mathematics Handbook, Definitions, Theorems, Formulas, Tables, McGraw-Hill Inc., New York, U.S.A.
- Yang, J. and Shen, H.S. (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos. Part B, 34(2), 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5.