• Title/Summary/Keyword: reference parameter

Search Result 845, Processing Time 0.032 seconds

Estimating Reference Crop Evapotranspiration Using Artificial Neural Network and Temperature-based Climatic Data (인공신경망모형을 이용한 기온기반 기준증발산량 산정)

  • Lee, Sung-Hack;Kim, Maga;Choi, Jin-Yong;Bang, Jehong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • Evapotranpiration (ET) is one of the important factor in Hydrological cycle and irrigation planning. In this study, temperature-based artificial neural network (ANN) model for daily reference crop ET estimation was developed and compared with reference crop evapotranpiration ($ET_0$) from FAO-56 Penman-Monteith method (FAO-56 PM) and parameter regionalized Hargreaves method. The ANN model was trained and tested for 10 weather stations (5 inland stations and 5 costal stations) and two input climate factors, maximum temperature ($T_{max}$), minimum temperature ($T_{min}$), and extraterrestrial radiation (RA) were used for training and validation of temperature-based ANN model. Monthly reference ET by the ANN model also compared with parameter regionalized Hargreaves method for ANN model applicability evaluation. The ANN model evapotranspiration demonstrated more accordance to FAO-56 PM evapotranspiration than the $ET_0$ from parameter regionalized Hargreaves method(R-Hargreaves). The results of this study proposed that daily reference crop ET estimated by the ANN model could be used in the condition of no sufficient climate data.

Reference priors for two parameter exponential stress-strength model

  • Kang, Sang-Gil;Kim, Dal-Ho;Le, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.935-944
    • /
    • 2010
  • In this paper, we develop the noninformative priors for the reliability in a stress-strength model where a strength X and a stress Y have independent exponential distributions with different scale parameters and a common location parameter. We derive the reference priors and prove the propriety of joint posterior distribution under the general prior including the reference priors. Through the simulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Conditions for Parameter Convergence of Model Reference Adaptive Control System using Power Spectrum Analysis (파워 스펙트럼 해석을 이용한 기준 모델 적응제어 시스템의 파라미터 수렴조건)

  • Kim, Sung-Duck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.557-568
    • /
    • 1989
  • Using Power Spectrum Analysis, conditions of parameter convergence for a Model Reference Adaptive Control (MRAC) system are described. The general Persistent Excitation (PE) condition given in time domain can be transformed to the positiveness of auto-correlation matrix which is represented in frequency domain by the spectra of reference input signal. For an MRAC system designed with relative degree one, the existence and the uniqueness of parameter nominal values due to the variation of input spectra can be analyzed by the PE condition in frequency domain. If the input signal has 2n spectra or more, it can be shown that the nominal values exist independent of adaptive gain, input amplitudes, and magnitudes or numbers of their spectra.

  • PDF

Noninformative priors for common scale parameter in the regular Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Kim, Yong-Ku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.353-363
    • /
    • 2012
  • In this paper, we introduce the noninformative priors such as the matching priors and the reference priors for the common scale parameter in the Pareto distributions. It turns out that the posterior distribution under the reference priors is not proper, and Jeffreys' prior is not a matching prior. It is shown that the proposed first order prior matches the target coverage probabilities in a frequentist sense through simulation study.

Influence of Parameter Setting in an Oil Cooler on the Temperature Characteristics of an Ultra-precision Hydrostatic Table (초정밀 유정압 테이블에서 냉각장치의 변수 설정이 온도특성에 미치는 영향)

  • Khim, Gyungho;Kim, Chang Ju;Oh, Jeong Seok;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • Temperature characteristics of supply oil in an ultra-precision hydrostatic table are largely influenced by parameter setting in an oil cooler such as the location of reference sensor and cooling temperature. In this paper, influences of the parameter setting on the temperature variation in the hydrostatic table are experimentally analyzed to suggest the guidelines for practical application. In case of using temperature of inlet oil as a reference sensor in the oil cooler, temperature rise of the supply oil is smaller and thermal settling time is faster than that of using temperature of outlet oil as a reference sensor. The experimental results also show that temperatures of table, rail and return oil can be made almost same, and thermal settling time can be decreased by setting cooling temperature in the oil cooler to be lower than atmospheric temperature.

Improving Performance of Crimp Signal Analysis by Falling Edge Alignment and Parameter Error Estimation in CFM (CFM에서 하강 에지 정렬과 파라미터 에러 평가에 의한 크림프 시그널 분석 성능 향상)

  • Aurecianus, Steven;Kang, Taesam;Han, Chung Gwon;Park, Jungkeun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.686-692
    • /
    • 2016
  • A Crimp Force Monitor (CFM) is equipment for detecting crimp errors by analyzing crimp signals obtained from force and strain sensors. The analysis is commonly performed by aligning a measured crimp signal with a reference signal and comparing their difference. Current analysis methods often suffer from wrong alignments that result in false negative detections. This paper presents a new crimp signal analysis method in CFM. First, a falling edge alignment is proposed that matches falling edges of the measured and the reference signals by minimizing the absolute difference summation. Second, a signal parameter error is introduced to evaluate the crimp quality difference between the measured signal and the reference. For calculating the signal parameter error, part of a signal is identified and divided into several regions to maximize the signal parameter errors. Experiments showed that the proposed method can improve the signal alignment and accurately detect bad crimps especially with the strain sensor.

Parameter estimation of permanent magnet synchronous motor and adaptive control by MRAS (MRAS를 이용한 매입형 영구자석 동기전동기의 상수 추정 및 적응제어기법)

  • Yang, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.697-702
    • /
    • 2016
  • To control permanent magnet synchronous motors smoothly, it is important to know the exact parameter values of the stator resistance, various inductances, and the flux linkage of the permanent magnet. In practice, these parameters vary due to a variable operating point, temperature change, or a fault. This paper proposes a MRAS (Model Reference Adaptive System) based parameter estimator and adaptive control scheme. Owing to the non-linearity of the system equation with respect to these parameters, although many schemes proposed previously assumed that some parameters are known, all the parameters were assumed to be unknown. The simulation results revealed the effectiveness of the proposed algorithm.

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.