• Title/Summary/Keyword: reference parameter

Search Result 845, Processing Time 0.033 seconds

Sensitivity of WindSIM in Complex Terrain

  • Shin, Chongwon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • The purpose of this research is to analyze the sensitivity of WindSIM in complex terrain. As the flat areas for wind turbine installation become scarce globally, it becomes inevitable to install wind turbines in complex terrain. In order to predict annual energy production (AEP) in a more precise manner in complex terrain, it is of great importance to conduct such research. Three parameters: reference velocity, roughness and resolution have been chosen to see to which parameter WindSIM was the most sensitive in terms of annual energy production in complex terrain. By fixing two parameters and setting one parameter as a variable, it could be easily found that how annual energy production was effected by the change in each parameter.

  • PDF

Parameter Estimater of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 파라미터 추정)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.197-199
    • /
    • 2003
  • This paper is Proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

Real Time Control for the Position and Velocity of Robot Manipulator With Parameter Uncertainties (不確實性을 고려한 로보트 매니퓰레이터의 位置 및 速度에 대한 實時間 制御)

  • Lee, Gang-Du;Kim, Gyeong-Nyeon;Han, Seong-Hyeon;Lee, Jin;Lee, Jong-Nyeon;Kim, Hwi-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.30-40
    • /
    • 1995
  • In this paper, it is proposed a robust control scheme for real time control of a robot manipulator with parameter uncertainties. The focus of this paper is a new approach of multivariable control schemes for an assembly robot manipulator to achieve the accurate trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and feedback controller. In this control scheme, the feedback controller consists of proportional-derivative type and is designed by the pole placement method. The feedforward controller uses the inverse of the linealized model of robot manipulator dynamics. This feedback controller ensures that each joint enables to track any reference trajectory. The proposed robot controller scheme has a computational efficiency.

  • PDF

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.

Fault Detection and Identification of Uninhabited Aerial Vehicle using Similarity Measure (유사측도를 이용한 무인기의 고장진단 및 검출)

  • Park, Wook-Je;Lee, Sang-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is recognized that the control surface fault is detected by monitoring the value of the coefficients due to the control surface deviation. It is found out the control surface stuck position by comparing the trim value with the reference value. To detect and isolate the fault, two mixed methods apply to the real-time parameter estimation and similarity measure. If the scatter of aerodynamic coefficients for the fault and normal are closing nearly, fault decision is difficult. Applying similarity measure to decide for fault or not, it makes a clear and easy distinction between fault and normal. Low power processor is applied to the real-time parameter estimator and computation of similarity measure.

Spacecraft Moment of Inertial Estimation by Modified Rodrigues Parameters (Modified Rodrigues Parameter 기반의 인공위성 관성모멘트 추정 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This study addresses spacecraft moment of inertial estimation approach using Modified Rodrigues Parameters(MRP). The MRP offer advantage by avoiding singularity in Kalman Filter design for attitude determination caused by the norm constraint of quaternion parameters. Meanwhile, MRP may suffer singularity for large angular displacement, so that we designed appropriate reference attitude motion for accurate estimation. The proposed approach is expected to provide stable error covariance update with accurate spacecraft mass property estimation results.

Scalable Extension of HEVC for Flexible High-Quality Digital Video Content Services

  • Lee, Hahyun;Kang, Jung Won;Lee, Jinho;Choi, Jin Soo;Kim, Jinwoong;Sim, Donggyu
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.990-1000
    • /
    • 2013
  • This paper describes the scalable extension of High Efficiency Video Coding (HEVC) to provide flexible high-quality digital video content services. The proposed scalable codec is designed on multi-loop decoding architecture to support inter-layer sample prediction and inter-layer motion parameter prediction. Inter-layer sample prediction is enabled by inserting the reconstructed picture of the reference layer (RL) into the decoded picture buffer of the enhancement layer (EL). To reduce the motion parameter redundancies between layers, the motion parameter of the RL is used as one of the candidates in merge mode and motion vector prediction in the EL. The proposed scalable extension can support scalabilities with minimum changes to the HEVC and provide average Bj${\o}$ntegaard delta bitrate gains of about 24% for spatial scalability and of about 21% for SNR scalability compared to simulcast coding with HEVC.

Study on the Parameters affecting Thermal Stress in Mass Concrete (매스콘크리트에서 온도응력에 영향을 주는 인자에 대한 연구)

  • 이대근;김종우;하재담;김기수;차수원;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.211-216
    • /
    • 1998
  • Parameter analysis of mass concrete structures of two types subjected to heat of hydration and surface heat transfer is presented. Thermal stress analysis is conducted through the 3D FEM program. Thermal and mechanical properties of concrete, for example, conductivity, heat capacity, density, thermal expansion coefficient are varied from 80% to 120% of a reference value, and the change of thermal stress against the parameter is achieved respectively. As a result of the analysis, the parameter affecting thermal stress most significantly is an adiabatic temperature rise in the case of wall-type structure, and an initial temperature of concrete in the case of slab-type structure, respectively.

  • PDF

System Parameter Estimation and PID Controller Tuning Based on PPGAs (PPGA 기반의 시스템 파라미터 추정과 PID 제어기 동조)

  • Shin Myung-Ho;Kim Min-Jeong;Lee Yun-Hyung;So Myung-Ok;Jin Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • In this paper, a methodology for estimating the model parameters of a discrete-time system and tuning a digital PID controller based on the estimated model and a genetic algorithm is presented. To deal with optimization problems regarding parameter estimation and controller tuning, pseudo-parallel genetic algorithms(PPGAs) are used. The parameters of a discrete-time system are estimated using both the model adjustment technique and a PPGA. The digital PID controller is described by the pulse transfer function and then its three gains are tuned based on both the model reference technique and another PPGA. A set of experimental works on two processes are carried out to illustrate the performance of the proposed method.

Parameter Identification of an Induction Motor Drive with Magnetic Saturation for Electric Vehicle

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.418-423
    • /
    • 2011
  • This paper presents a simulation model and a parameter identification scheme of an induction motor drive for electric vehicle. The induction motor in automotive applications should operate in very high efficiency and achieve the maximum-torque-per-ampere (MTPA) feature even with saturated magnetic flux under very high torque. The indirect vector control which is typically adopted in traction drive system requires precise information of motor parameters, particularly rotor time constants. This work models an induction motor considering magnetic saturation and proposes an empirical identification method using the current controller in the synchronous reference frame. The proposed method is applied to a 22kW-rated induction motor for electric vehicle.