• 제목/요약/키워드: reference current generator

검색결과 106건 처리시간 0.025초

능동전력필터의 정밀 기준신호 발생기 (Accurate Current Reference Generator for Active Power Filters)

  • 배병열;전영수;한병문;소용철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.575-578
    • /
    • 2004
  • The performance of an active power filter(APF) depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was first verified through a simulation with MATLAB. Furthermore, the application of feasibility was evaluated through experimenting with a single-phase APF prototype based on the proposed reference generator, which was implemented using the TMS320C31 floating-point signal processor. Both simulations and experimental results confirm that our reference signal generator can be used successfully in practical active power filters.

  • PDF

Optimal Efficiency Control of Induction Generators in Wind Energy Conversion Systems using Support Vector Regression

  • Lee, Dong-Choon;Abo-Khalil, Ahmed. G.
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.345-353
    • /
    • 2008
  • In this paper, a novel loss minimization of an induction generator in wind energy generation systems is presented. The proposed algorithm is based on the flux level reduction, for which the generator d-axis current reference is estimated using support vector regression (SVR). Wind speed is employed as an input of the SVR and the samples of the generator d-axis current reference are used as output to train the SVR algorithm off-line. Data samples for wind speed and d-axis current are collected for the training process, which plots a relation of input and output. The predicted off-line function and the instantaneous wind speed are then used to determine the d-axis current reference. It is shown that the effect of loss minimization is more significant at low wind speed and the loss reduction is about to 40% at 4[m/s] wind speed. The validity of the proposed scheme has been verified by experimental results.

저전압 기준전압 발생기를 위한 시동회로 (Robust Start-up Circuit for Low Supply-voltage Reference Generator)

  • 임새민;박상규
    • 전자공학회논문지
    • /
    • 제52권2호
    • /
    • pp.106-111
    • /
    • 2015
  • 일반적으로 기준전압 생성기는 쌍안정성을 가지므로 이를 올바른 상태에서 동작시키기 위해서는 적절한 시동회로가 필요하다. 본 논문에서는 저전압 기준전압 발생기를 위한 새로운 시동회로를 제안한다. 제안한 시동회로는 기준전압발생기의 상태를 결정하기 위하여 기준전압 발생기의 BJT에 흐르는 전류를 측정한다. 기준전압발생기가 올바른 상태에 있을 때 이 전류가 가지는 값은 잘 정의되므로 이를 통하여 회로의 상태를 신뢰성 있게 결정할 수 있다. 전류는 내부에 오프셋 전압을 갖는 비교기를 이용하여 측정하였다. 130nm CMOS 공정을 이용하여 설계를 하였으며, 레이아웃에서 추출한 기생 성분을 포함하는 Monte-Carlo 시뮬레이션을 통해 회로의 성능을 검증 하였다. 제안된 시동회로를 사용하는 기준전압발생기에 850mV 이상의 전원 전압이 가해질 경우, 소자에 미스매치가 있더라도 안정적으로 기준전압 생성기가 시동하는 것을 확인하였다.

기준 슬립 발생기 및 적응 슬라이딩 모드 기법을 이용한 철도차량 제동력 제어 (Adhesive Force Control of Railway Rolling Stock Using Reference Slip Generator and Adaptive Sliding-mode Technique)

  • 임태형;김승수;최정주;이병룡;양순용
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.56-61
    • /
    • 2007
  • In the braking of railway rolling stock, the slip that is the relative velocity between train body and its wheel affects the adhesive force which is connected to the braking force. The coefficient of the adhesive force changes in accordance with the slip and the condition of a rail road. Namely, its value increases upon the maximum on a rail condition, and there it declines conversely while the magnitude of slip keeps rising on. First, this paper introduced a reference slip generator so that can utilize maximum adhesive forces with a disturbance observer for estimating unmeasurable current adhesive forces which is as an input of the generator. And, an adaptive sliding-mode control system has been synthesized for minimizing the error between reference and current slip. Finally the effectiveness of the proposed control system is evaluated by computer simulation.

50kW 계통연계형 디젤발전기의 모델링 및 실험 (Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode)

  • 이우종;이학주;차한주
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

NVM IP용 저전압 기준전압 회로 설계 (Design of Low-Voltage Reference Voltage Generator for NVM IPs)

  • 김명석;정우영;박헌;하판봉;김영희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.375-378
    • /
    • 2013
  • 본 논문에서는 EEPROM이나 MTP 등의 NVM 메모리 IP 설계에 필요로 하는 PVT(Process-Voltage-Temperature) 변동에 둔감한 기준전압(Reference Voltage) 회로를 설계하였다. 매그나칩반도체 $0.18{\mu}m$ EEPROM 공정을 이용하여 설계된 BGR(Bandgap Reference Voltage) 회로는 wide swing을 갖는 캐스코드 전류거울 (cascode current-mirror) 형태의 저전압 밴드갭 기준전압발생기 회로를 사용하였으며, PVT 변동에 둔감한 기준전압 특성을 보이고 있다. 최소 동작 전압은 1.43V이고 VDD 변동에 대한 VREF 민감도(sensitivity)는 0.064mV/V이다. 그리고 온도 변동에 대한 VREF 민감도는 $20.5ppm/^{\circ}C$이다. 측정된 VREF 전압은 평균 전압이 1.181V이고 $3{\sigma}$는 71.7mV이다.

  • PDF

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

소호각 제어를 이용한 Switched Reluctance Generator의 출력 전압 제어 (Output Voltage Control Method of a Switched Reluctance Generator using Turn-off Angle Control)

  • 김영조;전형우;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권7호
    • /
    • pp.356-363
    • /
    • 2001
  • A SRG (Switched Reluctance Generator) has many advantages such as high efficiency, low cost, high-speed capability and robustness compared with other of machine. But the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using the PID controller which only controls turn-off angles while keeping turn-on angles of SRG constant. In order to keep the output voltage constant, the turn-off angle for load variations is controlled by using linearity between the generated current and turn-off angle since the reference generated current can be led through the voltage errors between the reference and the actual voltage. The suggested control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and the speed sensors. The proposed method is verified by experiments.

  • PDF