• Title/Summary/Keyword: reference coordinates

Search Result 240, Processing Time 0.027 seconds

Computation of Bessel Coordinates of the Cadastral Control Points by Trilateration Adjustment of GPS Baseline Measurements (GPS 관측기선의 삼변망 조정계산에 의한 우리나라 지적측량기준점의 베셀성과 산출)

  • Yang, Chul-Soo;Kang, Sang-Gu;Jung, Rea-Jung;Kim, Yong-Ho;Lee, Min-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • In this study, the software to compute Bessel coordinates by trilateration adjustment was developed, and the software was used to determine coordinates of the cadastral control points over the southern Korean peninsula. The baseline measured by GPS was reduced to the distance on geoid surface by applying PNU95 geoid model, and the distance on geoid surface was reduced to the plane grid distance by applying scale factor of map projection of Bessel coordinates. Using the plane grid distance, Bessel coordinates of 32 CORS (Continuously Operating Reference Station) were computed by free adjustment at first, and then the coordinates of the cadastral control points were computed by joining the control points to adjacent CORS. The result shows a possibility of construction of highly accurate and consistent cadastral survey network with coordinate error less than 1ppm of distance, when newly computing the coordinates of the control points by using distances measured by GPS.

  • PDF

Determining the Compensation Voltages for Dynamic Voltage Restorers by use of PQR Instantaneous Power Theory (PQR 순시전력이론에 의한 동적전압보상기의 보상전압 결정)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 2003
  • This paper discusses how to generate the reference compensation voltages in Dynamic Voltage Restorers (DVR) by use of PQR instantaneous power theory. Sensed three-phase terminal voltages are transformed to PQR coordinates without time delay. Since the reference voltage in PQR coordinates is a single dc value, the voltage controller for DVRs is simple and easy to design. Proposed control method can be implemented by feedforward controllers or by feedback controllers. This paper verified the theory by a feedforward controller of a DVR with simulation and experiment.

Multibody Dynamics Formulation based on Relative Cartesian Coordinates for Subsystem Dynamic Analysis (부분 시스템 해석을 위한 상대 직교 좌표를 이용한 다물체 동역학 공식)

  • Kim, Sung-Soo;Song, Kum-Jung;Huh, Jae-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.899-904
    • /
    • 2004
  • Multibody dynamics formulation has been developed based on relative cartesian coordinates for subsystem analysis. Relative cartesian coordinates are defined with respect to a reference body of a subsystem. Relative cartesian formulation inherits the same merits of absolute cartesian formulation, such as generality and easy implementation. Two methods have been applied. One is Largrange Multiplier Elimination method and the other is independent coordinate method. A 1/4 car simulation has been carried out to verify the formulations. Since both methods provide identical results, it proves the validity of the formulation.

  • PDF

Development of Mandibular Movements Measuring System Using Double Stereo-Cameras

  • Park, Soon-Yong;Park, Sung-Kee;Cho, Chang-Hyun;Kim, Mun-Sang;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1183-1188
    • /
    • 2005
  • In this paper, we propose a 3D automated measuring system which measures the mandibular movements and the reference plane of the jaw movements. In diagnosis and treatment of the malocclusions, it is necessary to estimate the mandibular movements and the reference plane of the jaw movements. The proposed system is configured with double stereo-cameras, PC, two moving pattern plates(MPPs), two fixed pattern plates(FPPs) and one orbital marker. The virtual pattern plate is applied to calculate the homogeneous transformation matrices which describe the coordinates systems of the FPP and MPP with respect to the world coordinates system. To estimate the parameters of the hinge axis, the Euler's theorem is applied. The hinge axis points are intersections between the FPPs and the hinge axis. The coordinates of a hinge axis point with respect to the MPP coordinates system are set up to fixed value. And then, the paths of the jaw movement can be calculated by applying the homogeneous transformation matrix to fixed hinge axis point. To examine the accuracy of the measurements, experiments of measuring the hinge axis points and floating paths of them are performed using the jaw motion simulator. As results, the measurement errors of the hinge axis points are within reasonable boundary, and the floating paths are very similar to the simulator's moving path.

  • PDF

Realization of New Korean Horizontal Geodetic Datum: GPS Observation and Network Adjustment

  • Lee, Young-Jin;Lee, Hung-Kyu;Jung, Gwang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.529-534
    • /
    • 2006
  • New geocentric geodetic datum has recently been realized in Korea, Korean Geodetic Datum 2002- KGD2002, to overcome problems due to the existing Tokyo datum, which had been used in this country since early 20th century. This transition will support modern surveying techniques, such as Global Navigation Satellite Systems (GNSS) and ensures that spatial data is compatible with other international systems. For this realization, very long baseline interferometry (VLBI) observations were initially carried out in 1995 to determine the coordinates of the origin of KGD2002 based on the International Terrestrial Reference Frame (ITRF). Continuous GPS observations were collected from 14 reference stations across Korea to compute the coordinates of 1st order horizontal geodetic control points. During the campaign, GPS observations were also collected at about 9,000 existing geodetic control points. In 2006, network adjustment with all data obtained using GPS and EDM since 1975 has been performed under the condition of fixing the coordinates of GPS continuous observation stations to compute coordinate measurements of the 2nd and 3rd geodetic control points. This paper describes the GPS campaigns which have been undertaken since 1996 and details of the network adjustment schemes. This is followed

  • PDF

Determination of Terrestrial Reference Frame using a Space Geodetic Technique (우주측지기술을 이용한 지구기준좌표계 결정)

  • Yoo, Sung-Moon;Cho, Jung-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.43-44
    • /
    • 2010
  • We present the analysis of space geodetic technique observation, Satellite Laser Ranging (SLR), to LAGEOS1 and LAGEOS2 for the definition of the Terrestrial Reference Frame (TRF). The data were analyzed in 7day arcs during about 9 years (2000/01/10 ~ 2008/12/29) using NASA Goddard's GEODYN/SOLVE II software. The comparison of the coordinates between ITRF2005 and TRF solutions determined in this work shows that there is no significant bias.

  • PDF

Controller Design for Dynamic Voltage Restorers by use of PQR Power Theory II - Determine The Compensation Voltages (PQR 순시전력이론에 의한 Dynamic Voltage Restorer의 제어기 설계 II -보상전 압의 결정)

  • Kim H.S.;Lee S.J.;Sul S.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.404-409
    • /
    • 2003
  • This paper discusses how to generate the reference compensation voltages in Dynamic Voltage Restorers (DVR) by use of PQR power theory Sensed three-phase terminal voltages are transformed to PQR coordinates without time delay. Since the reference voltages in PQR coordinates are do values, the voltage controller for DVRs is simple and easy to design. Proposed control method can be implemented by feedforward controllers or by feedback controllers. This paper verified the theory in the feedforward controller of a DVR by experiments.

  • PDF

An Improved Guidance Algorithm for Smooth Transition at Way-Points in 3D Space for Autonomous Underwater Vehicles

  • Subramanian, Saravanakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • This paper presents an improved guidance algorithm for autonomous underwater vehicles (AUV) in 3D space for generating smoother vehicle turn during the course change at the way-points. The way-point guidance by the line-of-sight (LOS) method has been modified for correcting the reference angles to achieve minimal calculation and smoother transition at the way-points. The algorithm has two phases in which the first phase brings the vehicle to converge to a distance threshold point on the line segment connecting the first two way-points and the next phase generates an angular path with smoother transition at the way-points. Then the desired angles are calculated from the reference and correction angles. The path points are regularly parameterized in the spherical coordinates and mapped to the Cartesian coordinates. The proposed algorithm is found to be simple and can be used for real time implementation. The details of the algorithm and simulation results are presented.

Localization of an Autonomous Mobile Robot Using Ultrasonic Sensor Data (초음파센서를 이용한 자율 이동로봇의 위치추적)

  • 최창혁;송재복;김문상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.666-669
    • /
    • 2000
  • Localization is the process of aligning the robot's local coordinates with the global coordinates of a map. A mobile robot's location is basically computed by a dead reckoning scheme, but this position information becomes increasingly inaccurate during navigation due to odometry errors. In this paper, the method of building a map of a robot's environment using ultrasonic sensor data and the occupancy grid map scheme is briefly presented. Then, the search and matching algorithms to compensate for the odometry error by comparing the local map with the reference map are proposed and verified by experiments. It is shown that the compensated error is not accumulated and exists within the limited range.

  • PDF

Stereo Vision System Using Relative Stereo Disparity with Subpixel Resolution

  • Kim, Chi-Yen;Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.407-407
    • /
    • 2000
  • For acquisition of 3-Dimensional information in real space, stereo vision system is suitable. In the stereo system, 3D real world position is derived from translation of coordinates between cameras and world. Thus, to use stereo vision, it is needed to construct a precise system which provides kinematically precise translation between camera and world coordinate, in spite of intricacy and hardness. So much cost and time should be spent to build the system. In this paper, facilely to solve previous problem, a method which can easily obtain 3D informations using reference objects and RSD(Relative Stereo Disparity) is proposed. Instead of direct computation of position with translation of coordinates, only relative stereo disparity in stereo pair of image is used to find the reference depth of objects, and real 3D position is computed with initial condition of reference objects. In computation, subpixel resolution is involved to find the display for accuracy. To find the RSD, corresponding points are calculated in subpixel resolution. So the result in experiemnt will be shown that subpixel resolution is more accurate than 1 pixel resolution.

  • PDF