• Title/Summary/Keyword: reductive dissolution

Search Result 23, Processing Time 0.019 seconds

Vertical Distribution of Heavy Metal Concentrations in Sediment Cores and Sedimentation Rate Using $^{210}Pb$ Dating Technique in the Juam Reservoir (주암댐 호저 퇴적물에서의 수직적 중금속 분산과 $^{210}Pb$를 이용한 퇴적속도산정)

  • Lee Pyeong-Koo;Youm Seung-Jun;Yeon Gyu Hun;Chi Se-Jung;Kim Ji-Wook;Oh Chang-Whan;Kim Sun-Ok
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2005
  • Twelve bottom sediments and three cores were collected in Juam reservoir for a study on transportation, which was controlled by particle grain size (2mm-200{\mu}m,\;200-100{\mu}m,\;100-50{\mu}m,\;50-20{\mu}m,\;<20{\mu}m), and vertical distribution of heavy metals. Sediment cores were sliced into 2 to 5 cm intervals to measure heavy metal concentrations in interstitial water and sediments with depth. Pb isotopic compositions of core samples were determined to calculate sedimentation rate. Regardless of sampling sites, levels of heavy metals and trace elements in bottom sediments are nearly constant with mean values of $14.9\;{\mu}g/g\;for\;As,\;0.81{\mu}g/g\;for\;Cd,\;30.7{\mu}g/g\;for\;Cu,\;34.7{\mu}g/g\;for\;Ni,\;63.3{\mu}g/g\;for\;Pb\;and\;87.9{\mu}g/g\;for\;Zn$. In general, Cu, Pb, Zn, Wi, and Cr in fraction of $<20{\mu}m$ exhibit the highest concentration, but content of As is the highest in grain size of $2\;mm-200\;{\mu}m$ and $200-100\;{\mu}m$. Fe and Mn occur as the dissolved compositions of the highest concentrations in interstitial waters and increase in their concentrations toward lower part of cores. On the contrary, concentrations of Zn and Cu show the highest value in the uppermost part in cores, suggesting these elements are released from reductive dissolution of hydroxides and oxidation of organic matters under different redox conditions. The highest accumulations of Cu, Ni, Pb, and Zn contents in the sediment cores are observed at 0-4 cm layers, and concentrations of Cu and Pb are especially high, implying these heavy metals are originated from anthropogenic sources. The apparent sedimentation rate estimated using unsupported $^{210}Pb$ is 0.91 cm $year^{-1}$, corresponding about 10 cm sedimentation in total depth since construction of Juam dam. These results will provide available information for management of bottom sediment in Juam reservoir.

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.

Effect of organic matter addition on the solubility of arsenic in soil and uptake by rice: a field-scale study (유기물 시용이 토양 내 비소의 용해도와 벼의 비소 흡수에 미치는 영향)

  • Yoo, Ji-Hyock;Kim, Dan-Bi;Kim, Won-Il;Kim, Sung-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.439-446
    • /
    • 2021
  • A field-scale study was conducted to evaluate the effect of organic matter amendments on the solubility of arsenic (As) in paddy soil and uptake by rice. Six organic matter (rice bran, rice straw, pig/cattle/fowls manure compost and swine liquid manure) were added to two polluted soils with high As (53 mg kg-1) and low As concentration (28 mg kg-1), and changes in soil solution constituents was monitored. The mean As concentrations in soil solution from the high As soil with rice bran, pig manure compost and swine liquid manure addition were significantly higher (0.61-1.15 mg L-1) than that of the control (0.42-0.66 mg L-1). Regression between As and Fe in soil solution indicated that As was attributable to reductive dissolution of Fe (hydr)oxides and it was driven by organic matter addition. Mean As concentrations in brown rice from the high As soil were 0.35-0.46 mg kg-1, above the maximum safety level of inorganic As (0.35 mg kg-1), and tended to be higher in organic matter amended soils than that of the control. The significant correlation between grain As and soil solution As was not observed and it was probably attributable to As tolerance of rice causing the reduction of As uptake and/or translocation to grain. However, considering the significant As release in soil solution from the high As soil and the tendency of grain As elevation after organic matter addition, it is needed to be cautious for food safety when amending organic matter to paddy soil with high As concentration.