• Title/Summary/Keyword: reduction kinetics

Search Result 243, Processing Time 0.02 seconds

Hypouricemic and xanthine oxidase inhibitory activities of the fractions of Coccinia grandis L. Voigt

  • Umamaheswari, M;Chatterjee, TK
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.477-484
    • /
    • 2008
  • The present study was aimed at investigating the hypouricemic and xanthine oxidase inhibitory activities of the various fractions of the hydromethanolic extract of the leaves of Coccinia grandis L. Voigt (Cucurbitaceae). The leaves of this species was used in traditional medicinal system for the treatment of gout, rheumatism, jaundice, bronchitis, fever, skin eruptions, wounds, etc. The degree of xanthine oxidase inhibition was determined in vitro by measuring the increase in absorbance at 295 nm associated with uric acid formation. Among the fractions tested, the chloroform fraction exhibited highest potency ($IC_{50}$ $17.8\;{\mu}g/ml$). This was followed by the pet-ether ($IC_{50}$ $29.7\;{\mu}g/ml$), ethyl acetate ($IC_{50}$ $41.2\;{\mu}g/ml$) and residual ($IC_{50}$ $47\;{\mu}g/ml$) fractions. The $IC_{50}$ value of allopurinol was $6.1\;{\mu}g/ml$. In addition, the hypouricemic and hepatic xanthine oxidase (XO)/xanthine dehydrogenase (XDH) inhibitory activities of the fractions were examined in vivo using oxonate (280 mg/kg, i.p.) induced hyperuricemic mice. At a dose of 200 mg/kg orally for 7 days, the pet-ether, chloroform and ethyl acetate fractions produced a significant (P < 0.01) reduction in serum urate level and also inhibited hepatic XO/XDH activities when compared to hyperuricemic mice. These inhibitory effects were weaker than that observed for the standard drug, allopurinol (10 mg/kg, p.o.). Lineweaver-Burk analysis of the enzyme kinetics indicated that the mode of inhibition was of a mixed type. These results suggest that the use of Coccinia grandis leaves for the treatment of gout could be attributed to its XO inhibitory activity.

Altered Electrophysiological Properties of Coronary Artery in Iso-prenaline-Induced Cardiac Hypertrophy

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.413-421
    • /
    • 2001
  • An impaired smooth muscle cell (SMC) relaxation of coronary artery by alteration of $K^+$ channels would be the most potential explanation for reduced coronary reserve in left ventricular hypertrophy (LVH), however, this possibility has not been investigated. We performed morphometrical analysis of the coronary artery under electron microscopy and measured $Ca^{2+}-activated\;K\;(K_{Ca})$ currents and delayed rectifier K $(K_{dr})$ currents by whole-cell and inside-out patch-clamp technique in single coronary arterial SMCs from rabbits subjected to isoprenaline-induced cardiac hypertrophy. Coronary arterial SMCs underwent significant changes in ultrastructure. The unitary current amplitude and the open-state probability of $K_{Ca}$ channel were significantly reduced in hypertrophy without open-time and closed-time kinetic. The concentration-response curve of $K_{Ca}$ channel to $Ca^{2+}$ is shifted to the right in hypertrophy. The reduction in the mean single channel current and increase in the open channel noise of $K_{Ca}$ channel by TEA were more sensitive in hypertrophy. $K_{dr}$ current density is significantly reduced in hypertrophy without activation and inactivation kinetics. The sensitivity of $K_{dr}$ current on 4-AP is significantly increased in hypertrophy. This is the first study to report evidence for alterations of $K_{Ca}$ channels and $K_{dr}$ channels in coronary SMCs with LVH. The findings may provide some insight into mechanism of the reduced coronary reserve in LVH.

  • PDF

Effect of MoO3 Morphological Change over Hydrogen Spillover Kinetics (MoO3 Morphology 변화가 수소 Spillover에 미치는 영향)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1109-1113
    • /
    • 1999
  • sothemal reduction at $50^{\circ}C$ using $Pt/MoO_3$ or $Pt/MoO_3/SiO_2$ made by dry impregnation or physical mixture of $Pt^{\circ}$ and $MoO_3$ demonstrated that the $H_2$ uptake vis $H_2$ spillover from Pt into $MoO_3$ was enhanced as calcination temperature was increased. Surface area of exposed Pt crystallites measured by CO chemisorption was decreased with higher calcination temperature. In addition, TEM showed that $MoO_x$ overlayers were formed on Pt crystallites after calcination at $400^{\circ}C$. Consequentially, it was found that this increased active contact sites between Pt and $MoO_3$ due to surface morphological change was one of the dominant factors for this increased $H_2$uptake via $H_2$ spillover from Pt crystallites into $MoO_3$.

  • PDF

Cu2+ ion reduction in wastewater over RDF-derived char

  • Lee, Hyung Won;Park, Rae-su;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Kim, Sang Chai;Chung, Jin Do;Choi, Won Geun;Park, Young-Kwon
    • Carbon letters
    • /
    • v.18
    • /
    • pp.49-55
    • /
    • 2016
  • Refuse-derived fuel (RDF) produced using municipal solid waste was pyrolyzed to produce RDF char. For the first time, the RDF char was used to remove aqueous copper, a representative heavy metal water pollutant. Activation of the RDF char using steam and KOH treatments was performed to change the specific surface area, pore volume, and the metal cation quantity of the char. N2 sorption, Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), and Fourier transform infrared spectroscopy were used to characterize the char. The optimum pH for copper removal was shown to be 5.5, and the steam-treated char displayed the best copper removal capability. Ion exchange between copper ions and alkali/alkaline metal cations was the most important mechanism of copper removal by RDF char, followed by adsorption on functional groups existing on the char surface. The copper adsorption behavior was represented well by a pseudo-second-order kinetics model and the Langmuir isotherm. The maximum copper removal capacity was determined to be 38.17 mg/g, which is larger than those of other low-cost char adsorbents reported previously.

Comparative Study of the Dissolution Profiles of a Commercial Theophylline Product after Storage

  • Negro, S.;Herrero-Vanrell, R.;Barcia, E.;Villegas, S.
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.568-571
    • /
    • 2001
  • The purpose of this work was to study the effect of storage time and temperature on the in vitro release kinetics of a commercial sustained-release dosage form of theophylline, at different pHs of the dissolution medium. The formulation was stored at $35^{\circ}C$ for 16 months and at $45^{\circ}C$ for 8 months, with a relative humidity of 60%. The in vitro release tests were performed at pHs 2, 4, 6 and 7.4. The mean values of the transport coefficient n, were close to 0.5 in all the conditions tested, which indicates that the transport system is not modified after storage of the formulation at $35^{\circ}C$ and $45^{\circ}C$. The mean values of the dissolution rate constant ranged from 0.036 to 0.043 $min^{-n}$, under all the conditions tested. Significant differences (${\alpha}=0.05$) were found between pHs 2, 4 and 6, 7.4 for all the model-independent parameters studied. When the formulation was kept at $35^{\circ}C$ for 16 months, the mean percentage of drug dissolved at 8 hours was 25.61% (pHs 2, 4) and, 36.12% (pHs 6, 7.4), representing a 26% and 24% reduction, respectively. Simitar results were obtained after storing the formulation at $45^{\circ}C$ for 8 months, corresponding to 33.3% (pHs 2, 4) and, 22.5% (pHs 6, 7.4) diminution, respectively. The values of the similarity factory $f_2$, obtained were lower than 50, which indicates the lack of similarity among the dissolution profiles, after storing the formulation under the experimental Conditions tested.

  • PDF

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

Evaluation of Concentration and Reaction Kinetics through Color Analyses (색상 분석법을 이용한 농도 및 촉매반응속도 측정)

  • Lee, Euna;Chang, Ji Woong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-283
    • /
    • 2022
  • UV-vis spectroscopy is one of the powerful tools for measuring the concentrations of reactant and products during a chemical reaction. However, there is an limitation of using the technique when the reaction undergoes in high concentration and high temperature. Color analysis using camera images can provide the identical results with UV-vis analysis with regardless of the sample concentration and temperature. The catalytic reduction reaction of resazurin to resorufin was investigated using the color analysis with the color spaces such as CIE L*a*b*. Moreover, the color analysis enabled the independent analysis of two different material's concentrations without the deconvolution of overlapped wavelengths unlike the case of using UV-vis spectroscopy.

Cure Properties of Novel Epoxy Resin Systems for WLP (Wafer Level Package) According to the Change of Hardeners (경화제 변화에 따른 WLP(Wafer Level Package)용 신규 Epoxy Resin System의 경화특성)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.57-67
    • /
    • 2022
  • The curing characteristics of naphthalene type epoxy resin systems according to the change of curing agent were investigated to develop a new next-generation EMC(Epoxy Molding Compound) with excellent warpage characteristics, low thermal expansion, and excellent fluidity for WLP(Wafer Level Package). As epoxy resins, DGEBA, which are representative bisphenol type epoxy resins, NE-16, which are the base resins of naphthalene type epoxy resins, and NET-OH, NET-MA, and NET-Epoxy resins newly synthesized based on NE-16 were used. As a curing agent, DDM (Diamino Diphenyl Methane) and CBN resin with naphthalene moiety were used. The curing reaction characteristics of these epoxy resin systems with curing agents were analyzed through thermal analysis experiments. In terms of curing reaction mechanism, DGEBA and NET-OH resin systems follow the nth curing reaction mechanism, and NE-16, NET-MA and NET-Epoxy resin systems follow the autocatalytic curing reaction mechanism in the case of epoxy resin systems using DDM as curing agent. On the other hand, it was found that all of them showed the nth curing reaction mechanism in the case of epoxy resin systems using CBN as the curing agent. Comparing the curing reaction rate, the epoxy resin systems using CBN as the curing agent showed a faster curing reaction rate than them with DDM as a hardener in the case of DGEBA and NET-OH epoxy resin systems following the same nth curing reaction mechanism, and the epoxy resin systems with a different curing mechanism using CBN as a curing agent showed a faster curing reaction rate than DDM hardener systems except for the NE-16 epoxy resin system. These reasons were comparatively explained using the reaction rate parameters obtained through thermal analysis experiments. Based on these results, low thermal expansion, warpage reduction, and curing reaction rate in the epoxy resin systems can be improved by using CBN curing agent with a naphthalene moiety.

A Study on the Photocatalytic Decomposition of Organic Dyes by Porous Polyethersulfone/TiO2 Composite Membrane (기공형 polyethersulfone/TiO2 복합체 멤브레인의 유기염료분해 반응에 대한 광촉매 특성 연구)

  • Chang Hyeon, Song;Youngeup, Jin;Won Ki, Lee;Seong Il, Yoo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.51-56
    • /
    • 2023
  • Composite membranes consisting of TiO2 nanoparticles (NPs) and porous polymers have been widely utilized in photocatalytic water treatment because the composite membranes can allow an easy recovery of NPs after the photocatalytic reaction as well as the reduction of fouling in the membrane. However, the photocatalytic efficiency of the immobilized TiO2 NPs in the composite membranes has been discussed to a limited degree. In this study, we prepared polyethersulfone (PES)/TiO2 composite membranes to study the photocatalytic decomposition of organic dyes under light illumination. The decomposition kinetics of dye molecules by the PES/TiO2 composite membranes and colloidal TiO2 NPs have been compared to discuss the photocatalytic efficiency of NPs before and after their immobilization on the polymer membrane.

Peptides derived from high voltage-gated calcium channel β subunit reduce blood pressure in rats

  • Hyung Kyu Kim;Jiyeon Jun;Tae Wan Kim;Dong-ho Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.481-491
    • /
    • 2023
  • The β subunits of high voltage-gated calcium channels (HGCCs) are essential for optimal channel functions such as channel gating, activation-inactivation kinetics, and trafficking to the membrane. In this study, we report for the first time the potent blood pressure-reducing effects of peptide fragments derived from the β subunits in anesthetized and non-anesthetized rats. Intravenous administration of 16-mer peptide fragments derived from the interacting regions of the β1 [cacb1(344-359)], β2 [cacb2(392-407)], β3 [cacb3(292-307)], and β4 [cacb4(333-348)] subunits with the main α-subunit of HGCC decreased arterial blood pressure in a dose-dependent manner for 5-8 min in anesthetized rats. In contrast, the peptides had no effect on the peak amplitudes of voltage-activated Ca2+ current upon their intracellular application into the acutely isolated trigeminal ganglion neurons. Further, a single mutated peptide of cacb1(344-359)-cacb1(344-359)K357R-showed consistent and potent effects and was crippled by a two-amino acid-truncation at the N-terminal or C-terminal end. By conjugating palmitic acid with the second amino acid (lysine) of cacb1(344-359)K357R (named K2-palm), we extended the blood pressure reduction to several hours without losing potency. This prolonged effect on the arterial blood pressure was also observed in non-anesthetized rats. On the other hand, the intrathecal administration of acetylated and amidated cacb1(344-359)K357R peptide did not change acute nociceptive responses induced by the intradermal formalin injection in the plantar surface of rat hindpaw. Overall, these findings will be useful for developing antihypertensives.