• Title/Summary/Keyword: reduction atmosphere

Search Result 536, Processing Time 0.027 seconds

Effects of Cultural Practices on Methane Emission in Tillage and No-tillage Practice from Rice Paddy Fields (논토양에서 경운 및 무경운재배시 재배방법별 메탄 배출 양상)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Kim, Min-Tae;Kang, Hang-Won;Kang, Ui-Gum;Lee, Dong-Chang;Shin, Yong-Gwang;Kim, Kun-Yeop;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Field experiments were conducted to investigate the effect of various cultural practices on methane($CH_4$) emission in tillage and no-tillage practice in a clayey paddy soil from 1998 to 2000. The factors evaluated in tillage and no-tillage methods were types of nitrogen fertilizers, application method of chemical fertilizers, rice straw application and cultivation method. Of the nitrogen fertilizers, the amount of $CH_4$ emission in ammonium sulfate plot was the lowest, regardless of tillage and the application method. 26.4~41.1% of reduction by ammonium sulfate compared with urea. But in no-tillage which have problem of poor rice yield than tillage, coated urea was more effective nitrogen fertilizer because that showed similar $CH_4$ emission and highest rice yield at 80% of dosage of nitrogen. No-tillage plot emitted lower $CH_4$ than tillage plot where the fertilizers were incorporated. On the contrary, no-tillage plot showed a little higher $CH_4$ emission compared with tillage plot for the surface application. When rice straw was applied, no-tillage practice reduced methane emission by 26.6% compared with tillage practice, but showing a little difference of 10.7% in no application. With cultivation method, no-tillage practice reduced methane emission 26.6% compared with tillage for the 30-d-old seedling transplanting. But for the dry direct seeding practice, no-tillage was a less effective because considerable amounts of rice straw incorporated by tillage were more decomposed aerobically in the soil and emitted as $CO_2$ to the atmosphere with flooding in no-tillage soil.

Freud's Moses-study and the Principle of Mythological Hermeneutic: Its Political Theological Interpretation Through Jan Assmann's Theory of Cultural Memory (프로이트의 모세-가설과신화해석학의 원리: 얀 아스만의 문화적 기억이론을 통한 정치신학적 해석)

  • KIM, JIN
    • Journal of Korean Philosophical Society
    • /
    • no.119
    • /
    • pp.129-159
    • /
    • 2017
  • The study of Freud's Moses and the background of the establishment of monotheism has become a subject of attention in the new atmosphere of the spreading of political theology and the recent rediscovery of Egyptology. This paper examines the publishing background and intentions of Freud's last book, Moses and Monotheism. And it will emphasize the fact that the Moses-Egyptian theory and his criticism of monotheism hid political theological intentions to prevent the spread of anti-Semitism in Nazi Germany. According to the Egyptologist Jan Assmann, there is a difference in that Moses' Judaism is monotheism, but Akhenaten's Aton-religion is a cosmotheism, and while Freud emphasizes Moses the 'historical figure' of that name, Assmann refers to Moses as a 'mnemohistorical figure.' Just as Freud said that the source of Jewish hatred is in Moses himself who established monotheism, Assmann argues also, monotheism is based on the so-called "Mosaic distinction" that distinguishes between true religion and false religion, thus it is possible to dismantle oppression and violence through the abolition of the Mosaic distinction. Assmann estimates that Freud had a clear stance to stop the spread of anti-Semitism as "the most explicit opponent of the Mosaic distinction." While anti-Semitic hatred spread to Christians in the Nazi era, Freud regards the real founder of Christianity, a jew Paul, as both a "Judaism destroyer" and a "successor to Judaism." At this point, Taubes began to see Paul's theology from a political theological point of view, and Assmann succeeded it. The "historical Moses" described by Freud are not "Prophet Moses" but "Moses as lawmaker and political reformer", and Jewish hatred has arisen in his distinction. Thus, Freud's monotheistic criticism as "disintegration by historical reduction"(Nietzsche) has political theological power. Just as Taubes interpreted Paul as a political theologian, Assmann found political theological elements in Freud's criticism of monotheism.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

A Study on the Mitigation of Nitrous Oxide emission with the Horticultural Fertilizer of Containing Urease Inhibitor in Hot Pepper and Chinese Cabbage Field (고추와 배추 재배지에서 요소분해효소 억제제 함유 원예용 비료 시용에 따른 아산화질소 배출 저감 효과)

  • Ju, Ok Jung;Lim, Gap June;Lee, Sang Duk;Won, Tae Jin;Park, Jung Soo;Kang, Chang Sung;Hong, Soon Sung;Kang, Nam Goo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • BACKGROUND: About 81% of nitrous oxide ($N_2O$) emissions from agricultural land to the atmosphere is due to nitrogen (N) fertilizer application. Mitigation of $N_2O$ emissions can be more effective in controlling biochemical processes such as nitrification and denitrification in the soil rather than decreasing fertilizer application. The use of urease inhibitors is an effective way to improve N fertilizer efficiency and reduce $N_2O$ emissions. Several compounds act as urease inhibitors, but N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide. METHODS AND RESULTS: Hot pepper and chinese cabbage were cultivated in five treatments: standard fertilizer of nitrogen-phosphorus-potassium(N-P-K, $N-P_2O_5-K_2O$: 22.5-11.2-14.9 kg/ha for hot pepper and $N-P_2O_5-K_2O$: 32.0-7.8-19.8 kg/ha for chinese cabbage), no fertilizer, and NBPT-treated fertilizer of 0.5, 1.0, and 2.0 times of nitrogen basal application rate of the standard fertilizer, respectively in Gyeonggi-do Hwaseong-si for 2 years(2015-2016). According to application of NBPT-treated fertilizer in hot pepper and chinese cabbage, $N_2O$ emission decreased by 19-20% compared to that of the standard fertilizer plot. CONCLUSION: NBPT-treated fertilizer proved that $N_2O$ emissions decreased statistically significant in the same growth conditions as the standard fertilization in the hot pepper and chinese cabbage cultivated fields. It means that NBPT-treated fertilizer can be applied for N fertilizer efficiency and $N_2O$ emissions reduction.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

Effects of the Type of Exchanged Ions and Carbon Precursors on Methane Adsorption Behavior in Zeolite Templated Carbons Synthesized Using Various Ion-Exchanged Faujasite Zeolites (이온교환된 Faujasite 제올라이트를 이용한 제올라이트 주형 탄소체 합성 시 이온 교환 금속과 탄소 전구체가 메탄 흡착 거동에 미치는 영향)

  • Ki Jun Kim;Churl-hee Cho;Dong-Woo Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Zeolite template carbon (ZTC) was synthesized as an adsorbent to remove low-concentration CH4 from the atmosphere. The synthesis of ZTC was performed using CH4 and C2H2 as carbon precursors and their impact on adsorption was investigated. ZTC was also synthesized using Y zeolite ion-exchanged with CaCl2 and LiCl as templates to investigate the effect of using metals in ion exchange. The comparison of the carbon precursors revealed that C2H2 had a higher carbon yield than CH4. The synthesized ZTC exhibited developed micropores due to carbon deposition deep inside the micropores of the zeolite template. The kinetic diameter of C2H2 (0.33 nm) is smaller than that of CH4 (0.38 nm), which allowed for its deposition. The study compared metal precursors used for ion exchange and confirmed that the CaCl2-based ZTC developed more micropores compared to the LiCl-based ZTC. The ion-exchanged Ca inhibited pore blocking by the carbon precursor, allowing it to enter the pores. The ability of synthesized ZTC to adsorb N2 and CH4 at 298 K was investigated. The results showed that CH4 had a higher overall adsorption amount than N2. The sample synthesized using C2H2 and CaY exhibited the highest N2 and CH4 adsorption capacity. However, the sample synthesized with CH4 had the highest CH4/N2 gas uptake ratio, which is a crucial factor in designing an adsorption process. The observed difference was likely caused by the underdevelopment of ultrafine pores that are associated with N2 adsorption. This resulted in a reduction of N2 adsorption, leading to an increase in CH4/N2 separation.