Effects of Cultural Practices on Methane Emission in Tillage and No-tillage Practice from Rice Paddy Fields

논토양에서 경운 및 무경운재배시 재배방법별 메탄 배출 양상

  • Ko, Jee-Yeon (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Lee, Jae-Saeng (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Kim, Min-Tae (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Kang, Hang-Won (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Kang, Ui-Gum (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Lee, Dong-Chang (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Shin, Yong-Gwang (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Kun-Yeop (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Kyeong-Bo (National Honam Agricultural Experiment Station, RDA)
  • Received : 2002.05.09
  • Accepted : 2002.06.26
  • Published : 2002.08.30

Abstract

Field experiments were conducted to investigate the effect of various cultural practices on methane($CH_4$) emission in tillage and no-tillage practice in a clayey paddy soil from 1998 to 2000. The factors evaluated in tillage and no-tillage methods were types of nitrogen fertilizers, application method of chemical fertilizers, rice straw application and cultivation method. Of the nitrogen fertilizers, the amount of $CH_4$ emission in ammonium sulfate plot was the lowest, regardless of tillage and the application method. 26.4~41.1% of reduction by ammonium sulfate compared with urea. But in no-tillage which have problem of poor rice yield than tillage, coated urea was more effective nitrogen fertilizer because that showed similar $CH_4$ emission and highest rice yield at 80% of dosage of nitrogen. No-tillage plot emitted lower $CH_4$ than tillage plot where the fertilizers were incorporated. On the contrary, no-tillage plot showed a little higher $CH_4$ emission compared with tillage plot for the surface application. When rice straw was applied, no-tillage practice reduced methane emission by 26.6% compared with tillage practice, but showing a little difference of 10.7% in no application. With cultivation method, no-tillage practice reduced methane emission 26.6% compared with tillage for the 30-d-old seedling transplanting. But for the dry direct seeding practice, no-tillage was a less effective because considerable amounts of rice straw incorporated by tillage were more decomposed aerobically in the soil and emitted as $CO_2$ to the atmosphere with flooding in no-tillage soil.

무경운 재배가 논토양 온실가스 배출에 미치는 영향을 살펴보고자, 1998~2000년에 걸쳐 식질계 답토양에서 질소비종(요소, 유안, 완효성비료), 시비방법(전층시비, 표층시비), 유기물 시용(볏집시용, 무시용) 및 재배양식(건답직파, 중묘이앙) 등의 다양한 재배조건별 메탄가스 배출량을 경운과 무경운재배에서 조사하였다. 질소비종은 경운유무에 관계없이 유안시비구에서 메탄배출량이 가장 낮았다(요소 대비 26.6~41.1% 저감). 그러나 경운재배에 비해 수량이 낮은 무경운재배에서는 완효성 비료가 메탄배출량이 요소구에 비해 약간 적었고, 수량은 다른 질소비료 시비량이 80% 처리수준에서도 가장 높아 더 효율적인 비종으로 고려되었다. 시비방법에 따라서는 전층시비시 경운구에 비해 무경운구의 메탄배출량이 낮았으나 표층시비시에는 반대의 경향을 보였다. 볏짚 시용시에는 무경운에 의한 메탄배출 저감 효과가 강조되는 경향으로, 볏짚을 시용하지 않았을 때는 경운 대비 10.7% 저감되었고, $5000kg\;ha^{-1}$시용 시는 26.6% 저감되었다. 중묘이앙 재배시 무경운은 경운에 비해 26.6%의 메탄 배출 저감효과를 나타내었으나, 건답직파 재배시는 무경운에서 경운보다 메탄배출이 11.2% 증가하였는데 이는 건답직파시 논토양이 완전 담수되는 3엽기 이전에 경운에 의해 토양에 투입된 볏짚 중 상당한 양이 산화적으로 분해되어 $CO_2$로 대기중으로 배출되었기 때문이라 생각되었다.

Keywords

References

  1. Ball. B. C.. Scott. A. and Parker, J. P.. 1999. FIeld $N_2O$. $CO_2$. and CH4fluxes In relation to tl1lage. compaction and soil quality in Scotland. Soil TIll. Res.. 53. 29-39 https://doi.org/10.1016/S0167-1987(99)00074-4
  2. Denier van der Gon HAC. H.D. Nrur, RS. Lantfn, R. Wassmann. M. C. M. Alberto. J. B. Aduna and. M.J.P. Tan. 1992. Contorting factors of methane emission potentials. WISE Report 2. International Soil Reference and Information Center. Netherlands: 81-92
  3. DougJas. J.T .. and Crawford. C. E.. 1993. The response of a ryegrass sward to wheel traffic and applied nitrogen. Grass and Forage SCI. 48. 91-100 https://doi.org/10.1111/j.1365-2494.1993.tb01841.x
  4. Jacobson P.. Patrick W.H. Jr.. and Williams. B. G. 1981 Sulfide and methane formation in soils and sediments. Sol. SCI. 132:279-287
  5. Ko Jee-Yeon, H. W. Kang. U.G. Kang. H.M. Park. D.K. Lim. and K.B. Park. 1998 The effects ofnltrogen fertilizers and cultural patterns on methane emission from rice paddy field. Koe. J. Env. Agri. 17.3: 227-233
  6. Ko Jee-Yeon. and H.W. Kang 2000 The effects of cultural practices on methane emission from rice field. Nutrient cycling in agroecosystems 58: 311-314 https://doi.org/10.1023/A:1009867208059
  7. Keren, J.S.. and M. G. Johnson. 1993. Conservation tillage impacts on national soil and atmospheric carbon levels. SCI. Soc. Amer. J. 57. 200-210 https://doi.org/10.2136/sssaj1993.03615995005700010036x
  8. Uang. S. 1995. Possibility for reducing methane emission from rice fields in China. In IRRN: 31-45
  9. Minami. K. 1993 Methane from lice production. Res. Rep. Div. Environ. Planning. 9:243-258
  10. Neue H. U.. R Wassermann. R. S. Lannnx, M. C. Alberto, and Aduna JB 1994. Effect of fertilization on methane errusston.Int Rice Research Notes 19(3): 33-34
  11. Shin. Y. K. 1996. Mitigation options for methane emission from lice fields in Korea. Ambio, 25. (4): 289-291
  12. Shutz H.. Hozapfel-Pschom A Conrad R. Rennenberg H. and W Seiler. 1989. Three year continuous record on Influence daytime. season. and fertilizer treatment on methane emission rate from an Italian lice paddy fields. J. Geophys. Res. 94: 16405-16416 https://doi.org/10.1029/JD094iD13p16405
  13. Wang. Z. P.. R. D. DeLaune. P. H. Masscheleyn. and W. H. Patrick Jr. 1993. Soil redox and pH effects on methane production in a flooded lice soil. Soil SCI. Soc. Am. J. 57: 382 -385 https://doi.org/10.2136/sssaj1993.03615995005700020016x