• Title/Summary/Keyword: reducing toxicity

Search Result 207, Processing Time 0.039 seconds

Morphogenetic Alterations of Alternaria alternata Exposed to Dicarboximide Fungicide, Iprodione

  • Kim, Eunji;Lee, Hye Min;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.95-100
    • /
    • 2017
  • Fungicide-resistant Alternaria alternata impede the practical control of the Alternaria diseases in crop fields. This study aimed to investigate cytological fungicide resistance mechanisms of A. alternata against dicarboximide fungicide iprodione. A. alternata isolated from cactus brown spot was cultured on potato-dextrose agar (PDA) with or without iprodione, and the fungal cultures with different growth characteristics from no, initial and full growth were observed by light and electron microscopy. Mycelia began to grow from one day after incubation (DAI) and continued to be in full growth (control-growth, Con-G) on PDA without fungicide, while on PDA with iprodione, no fungal growth (iprodione-no growth, Ipr-N) occurred for the first 3 DAI, but once the initial growth (iprodione-initial growth, Ipr-I) began at 4-5 DAI, the colonies grew and expanded continuously to be in full growth (iprodione-growth, Ipr-G), suggesting Ipr-I may be a turning moment of the morphogenetic changes resisting fungicidal toxicity. Con-G formed multicellular conidia with cell walls and septa and intact dense cytoplasm. In Ipr-N, fungal sporulation was inhibited by forming mostly undeveloped unicellular conidia with degraded and necrotic cytoplasm. However, in Ipr-I, conspicuous cellular changes occurred during sporulation by forming multicellular conidia with double layered (thickened) cell walls and accumulation of proliferated lipid bodies in the conidial cytoplasm, which may inhibit the penetration of the fungicide into conidial cells, reducing fungicide-associated toxicity, and may be utilized as energy and nutritional sources, respectively, for the further fungal growth to form mature colonies as in Ipr-G that formed multicellular conidia with cell walls and intact cytoplasm with lipid bodies as in Con-G.

Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition

  • Liu, Zhaoyuan;Peng, Qing;Li, Yang;Gao, Yi
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.474-479
    • /
    • 2018
  • Cisplatin is one of the most effective chemotherapeutic drugs used in the treatment of HCC, but many patients will ultimately relapse with cisplatin-resistant disease. Used in combination with cisplatin, resveratrol has synergistic effect of increasing chemosensitivity of cisplatin in various cancer cells. However, the mechanisms of resveratrol enhancing cisplatin-induced toxicity have not been well characterized. Our study showed that resveratrol enhances cisplatin toxicity in human hepatoma cells via an apoptosis-dependent mechanism. Further studies reveal that resveratrol decreases the absorption of glutamine and glutathione content by reducing the expression of glutamine transporter ASCT2. Flow cytometric analyses demonstrate that resveratrol and cisplatin combined treatment leads to a significant increase in ROS production compared to resveratrol or cisplatin treated hepatoma cells alone. Phosphorylated H2AX (${\gamma}H2AX$) foci assay demonstrate that both resveratrol and cisplatin treatment result in a significant increase of ${\gamma}H2AX$ foci in hepatoma cells, and the resveratrol and cisplatin combined treatment results in much more ${\gamma}H2AX$ foci formation than either resveratrol or cisplatin treatment alone. Furthermore, our studies show that over-expression of ASCT2 can attenuate cisplatin-induced ROS production, ${\gamma}H2AX$ foci formation and apoptosis in human hepatoma cells. Collectively, our studies suggest resveratrol may sensitize human hepatoma cells to cisplatin chemotherapy via gluta${\gamma}H2AX$mine metabolism inhibition.

Effects of Water and Methanol Extracts of Cricket (Gryllus bimaculatus) on Alcohol Metabolism (귀뚜라미의 물 및 메탄올 추출물이 알코올 대사에 미치는 효과)

  • Lee, Yong-Woo;Lim, Soon-Sung;Ryu, Kang-Sun;Lee, Heui-Sam;Kim, Ik-Soo;Kim, Jin-Won;Ahn, Mi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.175-178
    • /
    • 2004
  • The cricket has been used in East Asia as crude drugs for treating fever and hypertension, and is presently reared as a pharmaceutical insect in China and a food for animals. For the purpose of evaluating protective extracts against alcohol-induced toxicity, the extracts of the cricket (Gryllus bimaculatus) were examined in animal models acutely administered alcohol by the cricket in ICR-mice. Water and methanol extracts from the cricket, were found to cause a significant decrease (37%) in the blood ethanol concentration as well as enhancement of liver mitochondrial alcohol dehydogenase (ADH) and acetaldehyde dehydogenase (ALDH) activitieson on a single intraperitoneal administration in mice. Futhermore methanol extract was demonstrated to exhibit more potent enhancing activity on ethanol metabolism than water extract. These results suggest that water/alcohol extract of G. bimaculatus may be used as a food for reducing the toxicity of alcohol.

Comparison of Index Compounds Content and Antioxidative Activity of Wild Ginseng Pharmacopuncture by Extraction Methods (산양산삼약침의 추출법 별 성분 및 항산화 활성 비교)

  • Lee, Dae-yeon;Choi, Byoung-sun;Lee, In-hee;Kim, Jae-hyun;Gwon, Pil-seung
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.313-322
    • /
    • 2018
  • Objectives: Wild ginseng pharmacopuncture is widely used in oriental medicine. However, there is no standard method for efficiently extracting the active ingredient. In this study, in order to determine an efficient extraction method, wild ginseng was extracted by the distillation and 70% ethanol reflux methods, respectively. In comparing each extract, the index compounds were analyzed, and antioxidant activity was measured. Methods: The index compounds, ginsenoside Rg1 and ginsenoside Rb1, were detected using high performance liquid chromatography (HPLC). Antioxidative activities of total phenolic compounds, DPPH (${\alpha}$, ${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) and FRAP (ferric reducing antioxidant power) were measured to compare their bioactivities. Since saponin is known to be hemolytic, the hemolytic activity of each extract was compared. Results: The index compounds were analyzed. Nothing was detected in the wild ginseng distilled extracts (WGDE). In the wild ginseng 70% ethanol reflux extracts (WGEE), ginsenoside Rg1 was 3.66 mg/g, and ginsenoside Rb1 was 16.70 mg/g. WGEE showed higher levels than WGDE in all antioxidative activities. In the hemolytic test, the extracts showed almost no toxicity, but WGEE showed lower toxicity than WGDE. Conclusions: In this study, it was concluded that WGEE is more advantageous than WGDE in the detection of index compounds and bioactivity. However, additional studies of additional extraction methods and other bioactivity tests are needed.

Furan in Thermally Processed Foods - A Review

  • Seok, Yun-Jeong;Her, Jae-Young;Kim, Yong-Gun;Kim, Min Yeop;Jeong, Soo Young;Kim, Mina K.;Lee, Jee-yeon;Kim, Cho-il;Yoon, Hae-Jung;Lee, Kwang-Geun
    • Toxicological Research
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • Furan ($C_4H_4O$) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as "possible human carcinogen (Group 2B)" by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, ${\alpha}$-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan.

Studies on Screening of Paraquat Toxicity Reducing Agent and its Inhibition Mechanism (Paraquat 독성 경감제 검색 및 그 억제 기전에 관한 연구)

  • Lee, Jeong-Hun;Koo, Sung-Ja;Choung, Se-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.192-198
    • /
    • 1998
  • In this study, we intended to evaluate the modulatory effects of natural products, ${\beta}-carotene$, aloesin and semiessential amino acid, taurine on the toxicitiy of paraquat. In the taurine treated groups, serem glutamic oxaloacetic transaminase (s-GOT), serem glutamic pyruvic transaminase (s-GPT). blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), alkaline phosphatase (ALP) activity in serum and MDA, ALP activity, collagen in lung tissue were decreased to the normal values. In the aloesin treated groups, s-GPT, BUN, creatinine, MDA level in serum were decreased to the normal values significantly. In the ${\beta}-carotene$ treated group, only s-GPTactivity was reduced to the normal values. In the lung tissue of taurine treated groups, MDA value, G-6-phosphatase activity and collagen synthesis were recovered to the normal valuse and ALP activity was increase about 40%. From these results, we concluded that taurine is an effective agent to inhibit the pulmonary and internal organs toxicities induced by paraquat and the inhibition effects of taurine are due to remove free radicals directly.

  • PDF

Distribution of Methyl Mercury in Sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa, Korea

  • Lee, Kyu-Tae;Kannan, Kurunthachalam;Shim, Won-Joon;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.178-184
    • /
    • 1998
  • To elucidate contamination levels and distribution of methyl mercury (Me-Hg) in Korean coastal areas, 126 sediment samples were collected from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa during 1995-1996, and the Me-Hg concentrations were determined by cold vapor atomic fluorescence spectrometry (CVAFS). Contamination levels of Me-Hg in sediments from Kyeonggi Bay, Namyang Bay, Chinhae Bay, and Lake Shihwa were 274 ${\pm}$ 990, 108 ${\pm}$ 24, 294 ${\pm}$ 342, and 1080 ${\pm}$ 760 pg/g, respectively. Concentrations of Me-Hg in sediments were significantly correlated with total organic carbon and sulfur contents, but were independent of mud contents and mean grain size. The highest concentration of Me-Hg (7100 pg/g) was observed at Incheon North Harbor (Site Kl9) in Kyeonggi Bay. This Me-Hg concentration was one or two orders of magnitude higher than those in other Kyeonggi Bay sediments were. The average concentration of Me-Hg in sediments from Lake Shihwa was higher than in those from other study areas. The three peaks of Me-Hg concentrations were observed on three sites (55, 56,and 510) in Lake Shihwa and gradually decreased in distance-dependent manner around these sites. High concentrations of Me-Hg at surface and 10-cm sediment depth in Chinhae Bay maybe due to higher rates of methylation process by active sulfate-reducing bacteria or higher concentrations of total mercury available to sulfate-reducing bacteria.

  • PDF

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Uranium Removal by D. baculatum and Effects of Trace Metals (국내 지하수에 서식하는 바쿨라텀(baculatum)에 의한 용존우라늄 제거 및 미량 중금속 원소들의 영향)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Removal of dissolved uranium by D. baculatum, a sulfate-reducing bacterium, and effects of trace metals such as manganese, copper, nickel, and cobalt were investigated. Total concentrations of dissolved uranium and trace metals were used by $50\;{\mu}M$ and $200\;{\mu}M$, respectively. Most dissolved uranium decreased up to a non-detectable level (< 10 ppb) MS during the experiments. Most of the heavy metals did nearly not affect the bioremoval rates and amounts of uranium, but copper restrained microbial activity. However, it is found that dissolved uranium rapidly decreased after 2 weeks, showing that the bacteria can overcome the copper toxicity and remove the uranium. It is observed that nickel and cobalt were readily coprecipitated with biogenic mackinawite.

The Antioxidation Effect of Mutimo cylindricus Extract and Its Influence on Cell Bioactivity (회초리말(Mutimo cylindricus)의 항산화, 항염 및 미백 활성)

  • Park, Sang-Nam;Lee, Ok-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.279-287
    • /
    • 2020
  • The objective of this study was to evaluate functionality of Mutimo cylindricus as a cosmetic ingredient, one of the brown algae. The M. cylindricus 70% ethanol extract was manufactured for antioxidant measurement. DPPH and ABTS methods were used to measure antioxidants, and its EC50 values were 2.040 and 2.182 mg/mL in each experiment. The measurement of total polyphenol contents and reducing power showed total polyphenol content of 103 mg gallic acid/g extract and reducing power of 134 mg ascorbic acid/g extract. To measure cell toxicity, MTT method was used, and its result showed that the extract was not cytotoxic. And it has anti-inflammatory and whitening activity at concentrations of 100 ㎍/mL. The result confirmed that M. cylindricus extract is available as a cosmetic material with whitening and anti-inflammatory properties.