• Title/Summary/Keyword: reduced sulfur compounds

Search Result 81, Processing Time 0.028 seconds

Storage stability of reduced sulfur gases in Tedlar bag sampler: Test of two different storing approaches (Tedlar-bag 시료채집법을 이용한 황화합물의 경시적 농도 변화특성: 시료의 생성방식의 차이에 따른 비교연구)

  • Jo, Hyo-Jae;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.212-218
    • /
    • 2011
  • In this study, temporal stability of 5 reduced sulfur compounds (RSCs) including ($H_2S$, $CH_3SH$, DMS, $CS_2$, and DMDS) was investigated up to 30 days. To learn the temporal changes in RSC concentration levels, two types of long-term storage experiment were carried out by employing two different approaches for sample storing in Tedlar bag samplers. The first one named as a forward (F) storage method consists of preparing all samples in the beginning of experiment. All these samples were analyzed sequentially through time. The second approach named as a reversed (R) storage method was carried out by preparing each sample through time and by analyzing all of them in the last day. For these experiments, RSC standards were prepared at 10 ppb in 10 L Tedlar bag. The results of both methods were consistent enough to show a tendency of the concentration reduction through time. Moreover, the lightest RSC, $H_2S$ showed the most significant reduction of 84.8% at the end of experiment. To validate difference between these results, t-test was applied to the data obtained between the two methods at 90% significance level. According to t-test, the results of the two approaches were greatly distinguished from 3 RSCs ($H_2S$, $CH_3SH$, and DMDS). The results also indicated that the temporal reduction of RSC differs greatly between light ($H_2S$ and $CH_3SH$) and heavy RSCs (DMS, DMDS, and $CS_2$). The former generally exhibited much significant reduction through time due probably to their lower stability.

Odorous Pollutant Concentration Levels in the Ban-Wall Industrial Area and Its Surrounding Regions (산업단지 및 주거지역에 대한 환경대기 중 주요 악취물질의 농도특성에 관한 연구 - 안산시 반월공단을 중심으로 -)

  • Choi, Ye-Jin;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.209-220
    • /
    • 2006
  • In this study, the distribution patterns of major odorous compounds in ambient air were investigated in the areas surrounding the Ban-Wall industrial complex of Ansan, Korea (Aug. 2004 to Sep. 2005). The results indicated the environmental significance of several major odorous compounds which include carbonyl compounds, reduced sulfur compounds (RSC), and volatile organic compounds (VOC). When the results were compared on a diurnal basis, the afternoon time concentration of most odorous compounds were notably higher than their morning time counterparts. It also indicated that the odor concentrations differed greatly, in terms of spatial grouping scheme of data sets, such as between industrial area and non-industrial area. The comparison of spatial patterns indicated that the concentrations of most of the compounds at the industrial area were maintained at high concentration levels, compared to the surrounding areas. The overall results of this study thus suggest that the distribution of odorous compounds in a large industrial complex can exhibit a unique pattern of their own.

Shipboard sewage treatment by SBR process with BM (BM 미생물제제를 이용한 크루즈선 오·폐수 처리)

  • Lee, Eon-Sung;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.817-822
    • /
    • 2011
  • Lab scale experiment study was carried out for biological treatment process development in cruise. SBR(Sequence Batch Reactor) process with BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. From the results it was suggested that SBR process with BM might be a suitable process for cruise sewage treatment in terms of decrease in odorous compounds, maintenance of useful microorganisms and creating special environmental conditions. By adding BM to SBR system, odor unit of sulfur compounds was about 20 times reduced.

Reaction of Potassium 9-sec-Amyl-9-boratabicylco[3.3.1]nonane with Selected Organic Compounds Containing Representative Functional Groups

  • Cha Jin Soon;Yoon Mal Sook;Lee Kwang Woo;Lee Jae Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.75-80
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium 9-sec-amyl-9-boratabicylco[3.3.1]nonane (K 9-sec-Am-9-BBNH) with selected organic compounds containing representative functional goups under standardized conditions (tetrahydrofuran, $0^{\circ}C)$ were examined in order to explore the reducing characteristics of the reagent for selective reductions. The reagent readily reduces aldehydes, ketones, acid chlorides and epoxides to the corresponding alcohols. However, carboxylic acid, aliphatic nitriles, t-amides, and some sulfur compounds show very little reactivity or no reactivity to this reagent. The most interesting feature of the reagent is that aromatic nitriles are reduced moderately to the corresponding aldehyde stage, wheras aliphatic nitriles are inert. In addition, the reagent shows a high stereoselectivity toward cyclic ketones at $0^{\circ}C$ and - $25^{\circ}C.$ The selectivity exhibited at $0^{\circ}C$ is comparable to that by lithium trisiamylborohydride at that temperature.

A Study of Control Efficiency for Odorous Pollutants in Various Emission Control Units in the Ban-Wall Industrial Complex (공단지역의 대기배출시설을 대상으로 한 악취성분의 처리효율에 관한 연구 - 반월공단 지역을 중심으로)

  • Choi, Y.J.;Jeon, E.C.;Kim, K.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.110-124
    • /
    • 2007
  • In this study, the control efficiency of odorous compounds was measured from diverse control process units of 14 individual companies located within the Ban-Wall industrial complex of Ansan city, Korea (January to July 2005), To quantify the control efficiency levels of major odorous compounds, we collected odor samples from both the front and rear side of 17 control process units ($N=17{\times}2=34$). If the control efficiency is compared for each of 32 compounds between different process units, wet scrubber (WS) was found to be the most effective unit in terms of the sum of pollutants showing the positive control signals. Although the WS system shows generally a good control pattern for VOC, it is not the case for most index odorous pollutants; only 3 out of 12 index compounds were found to show positive control efficiencies. The results of the study also indicated that the control efficiency differ greatly between different industrial sectors and/or control process types. In the case of leather industry, carbonyl compounds were found to exhibit the highest control efficiency with its values varying from 19 to 90%. On the other hand, in the case of metal production sector, VOC recorded the maximum control efficiency with values varying from 18 to 79%. According to this study, most air pollution control facilities operated in most companies show fairly poor control efficiencies for most malodor compounds. Hence, to obtain best control efficiency of odorous pollutant emission, acquisition of better information on source characteristics and establishment of effective control technologies are highly demanding.

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.

The Analysis of Sulfur Compounds of Odorous Material in Kunsan Industrial Complex

  • Kim, Seong-Cheon;Kim, Ki-Hyun;Choi, Yeo-Jin
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.399-405
    • /
    • 2005
  • In this study, we investigated the gas chromatography (GC) and pulsed flame photometric detection (PFPD) system for the analysis of four major reduced S compounds including hydrogen sulfide ($H_2S)$; methyl mercaptan ($CH_3SH$); dimethyl sulfide (DMS); and dimethyl disulfide(DMDS) contained in environmental samples. To analyze these compounds in high concentration range (above ppb level), we developed a high mode analytical setting with the loop-injection system. By contrast, we also established a low mode setting for the analysis of low concentration samples (ppt-level samples from ambient air) by the combination with thermal desorption unit(TDU). Comparative analysis of both settings revealed that relative detection properties of four S compounds are systematic enough. The results of high mode analysis indicated that the patterns were systematic among compounds: H2S exhibited the lowest sensitivity, while DMBS showed the strongest one. The results were also compared in terms of sensitivity reductions for all compounds by dividing slope ratios between low and high mode system. Although low mode system exhibited significant reductions on the order of a few tens times, their detection characteristics were highly consistent as it was shown in the high mode setting. To learn more about absolute and relative relations between two different modes of S analysis, future studies may have to be directed to cover more complicated nature of GC/PFPD performance. Hydrogen sulfide($H_2S$) was over in summer about low level of olfactory sense 410 ppt, Methyl mercaptan(C$H_3SH$) was over in apring and summer about low level of olfactory sense 70, Dimethyl sulfide(DMS) was not over in four season about low level of olfactory sense 2,200 ppt. Carbon disulfide($CS_2$) was not over in four deason about Tow level of olfactory sense 210,000, Dimethyl disulfide(DMDS) was not over in summer about low level of olfactory sense2,000.

  • PDF

ISOLATION AND IDENTIFICATION OF LACTOBACILLUS SALIVARIUS INHIBITING THE FORMATION OF ARTIFICIAL PLAQUE AND THE PRODUCTION OF VOLATILE SULFUR COMPOUNDS (치태 형성과 휘발성 유황화합물 생성을 억제하는 Lactobacillus salivarius의 분리 및 동정)

  • Kim, Mi-Hyung;Choi, Nam-Ki;Kim, Seon-Mi;Oh, Jung-Suk;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.344-356
    • /
    • 2005
  • There are normal inhabitants doing medically useful functions in the body. There are many kinds of bacteria performing specific functions in the oral cavity. Two strains of lactic acid bacteria were isolated from inhabitants of caries-free children's oral cavity, which inhibited the formation of artificial plaque by Streptococcus mutans and the production of volatile sulfur compounds by anaerobic bacteria. The isolates were identified by the test using API 50 CHL medium kit and 16S rDNA partial sequencing. 1. Two isolates were Gram-positive bacilli and produced hydrogen peroxide. 2. When Streptococcus mutans was cultured in the media, the mean weight of formed artificial plaque on the orthodontic wires was $124.4{\pm}30.4\;mg$, whereas being reduced to $5.2{\pm}2.0mg$ and $10.6{\pm}6.6mg$ in the media cultured with Streptococcus mutans and each isolate, respectively (p<0.05) 3. The number of viable cells of Streptococcus mutans was $3.4{\times}10^9$ per ml in the cultured solution, whereas those of Streptococcus mutans in the combined culture with each of isolates were $4.6{\times}10^8\;and\;2.4{\times}10^8$ per ml. 4. The optical density was 1.286 in the supernatant of Fusobacterium nucleatum after vortexing for 30minutes, whereas in the supernatant of combined Fusobacterium nucleatum and each isolate, they were reduced to 0.628 and 0.497, which the percentages of coaggregation between them were 29.4% and 57.8%, respectively 5. The optical density of Fusobacterium nucleatum precipitate was 1.794 in the culture media containing cysteine and $FeSO_4$, being reduced to 1.144 and 0.915 in the coaggregated precipitates of Fusobacterium nucleatum and each isolate. The optical density of Porphyromonas gingivalis precipitate was 1.932 in the culture media, being reduced to 1.170 and 1.266 in the coaggregated precipitates of Porphyromonas gingivalis and each isolate. 6. When two isolates were tested with API 50 CHL medium kit, those were identified Lactobaciallius salivarius and Lactobaciallius delbrueckii subsp. lactis. 7. The similarity values of 16S rDNA sequence between each of isolates and Lactobaciallius salivarius subsp. salicinius were 99.60% and 99.73%, respectively, meaning that isolates were Lactobaciallius salivarius subsp. salicinius. These results indicated that two strains isolated from caries-free children's saliva, which inhibited the formation of artificial plaque and the production of volatile sulfur compounds, were identified as Lactobaciallius salivarius subsp. salicinius.

  • PDF

Monitoring of Atmospheric Reduced Sulfur Compounds and Their Oxidation in Gunsan Landfill Areas

  • Kim, Seong-Cheon
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.166-173
    • /
    • 2007
  • 이 연구에서 환원성 황 화합물의 시간적, 공간적 분포 패턴들이 매립과정에 크게 영향 받는 지역에서 조사되었다. 이러한 측정 연구에 기초하여 환원성 황 화합물이 이산화황으로 변환되는 광화학적 작용 규모를 광화학적 상자모델을 이용하여 평가하였다 이 연구는 2004년 3월에서 12월까지 대기 중 환원성 황 화합물 농도를 군산시의 매립장 내부와 인근에서 평가했다. 환원성 황 화합물의 분포가 일반적으로 $H_2S$, DMS, 또는 DMDS들이 대부분인 반해, 그 패턴들은 시료채취 지역과 기간에 따라 다양했다. 군산 매립장에서 $H_2S$, DMS는 연구기간 동안 가장 높은 농도를 나타냈다. 이 지점에서 DMS의 농도는 매립 과정 뿐만 아니라 해양 오염원에 영향을 받는다고 사료되었다. 모든 환원성 황 화합물이 아황산가스의 광화학적 부산물에 대한 상대적 기여도를 비교할 때, 세가지 환원성 황 화합물(DMDS, $H_2S$, 그리고 DMS)이 가장 중요한 물질로 조사되었다.

Inhibiting Factors and Kinetics of Nonenzymatic Browning in Ginger(Zingiber officinale Roscoe) Paste Model System (생강 페이스트 모형액의 비효소적 갈색화 억제인자 및 반응속도)

  • 조길석;장영상;신효선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1135-1139
    • /
    • 1997
  • Major factors inhibiting nonenzymatic browning in stored ginger paste were investigated using aqueous model systems with temperature, water activity, pH and sulfur compounds. Browning index and total gingerols were measured during storage. The rate of nonenzymatic browning reactions showed a strong depencence on temperature and pH and a negligible influence on water activity. It was also reduced by the addition of 0.04% N-actyl-L-cysteine(NAcCys), effectively. Activation energies for aqueous ginger model systems with and without 0.04% NAcCys were 29.0 and 25.8kcal/mole, respectively.

  • PDF