• Title/Summary/Keyword: redox mediator

Search Result 43, Processing Time 0.03 seconds

Production of (R)-(-)-mandelic acid by electrochemically driven enzyme bioreactor

  • Kim, Mi-Hae;Yun, Se-Eok
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.642-645
    • /
    • 2001
  • Enterococcus faecalis was cultivated under oxidative conditions established by adding some oxidants. FAD and lipoic acid either stimulate the biosynthesis of benzoylformate reductase or stabilize the enzyme, while $MV^{2+}$ enhance the biosynthesis of the oxidoreductase but destabilize it. Since $MV^{2+}$ destabilize the benzoylformate reductase, substituting FAD for $MV^{2+}$ as a redox mediator would be desirable. Production of (R)-(-)-mandelic acid by a coupled reaction between the enzymatic reaction using benzoylformate reductase and the electrocatalytic reduction under the conditions of 1.5 U LiDH $ml^{-1}$, 0.2 mM FAD, and 0.3 mM $NAD^+$ is now performing.

  • PDF

Electrochemical Properties of Viologen Self-Assembly Monolayer Using QCM (수정진동자를 이용한 Viologen Self-Assembly 단분자막의 전기화학적 특성)

  • 옥진영;신훈규;박재철;장정수;권영수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.496-500
    • /
    • 2003
  • Molecular self-assembled of surfactant viologen are of recent interest because they can from functional electrodes as well as micellar assemblies, which can be profitably utilized for display devices, photoelectrochemical studies and electrocatalysis as electron acceptor or electron mediator. Fromherz et al studied the self-assembly of thiol and disulfide derivatives of viologens bearing long n-alkyl chains on Au electrode surface[1]. The electrochemical behavior of self-assembled viologen monolayer has been investigated with QCM, which has been known as nano-gram order mass detector. The self-assembly process of viologen was monitored using resonant frequency(ΔF) and resonant resistance(R). The redox process of viologen was observed with resonant frequency(ΔF).

Degradation of Phenanthrene by Trametes versicolor and Its Laccase

  • Han, Mun-Jung;Park, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.94-98
    • /
    • 2004
  • Phenanthrene is a three-ring polycyclic aromatic hydrocarbon and commonly found as a pollutant in various environments. Degradation of phenanthrene by white rot fungus Trametes versicolor 951022 and its laccase, isolated in Korea, was investigated. After 36 h of incubation, about 46% and 65% of 100 mg/l of phenanthrene added in shaken and static fungal cultures were removed, respectively. Phenanthrene degradation was maximal at pH 6 and the optimal temperature for phenanthrene removal was 30$^{\circ}C$. Although the removal percentage of phenanthrene was highest (76.7%) at 10 mg/1 of phenanthrene concentration, the transformation rate was maximal (0.82 mg/h) at 100 mg/L of phenanthrene concentration in the fungal culture. When the purified laccase of T. versicolor 951022 reacted with phenanthrene, phenanthrene was not transformed. The addition of redox mediator, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) or 1-hydroxybenzotriazole (HBT) to the reac-tion mixture increased oxidation of phenanthrene by laccase about 40% and 30%, respectively.

Screening of New Mediators for Lignin Degradation Based on Their Electrochemical Properties and Interactions with Fungal Laccase

  • Shin, Woon-Sup;Cho, Hee-Yeon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.1-8
    • /
    • 2006
  • This study was performed to evaluate extensive electrochemical characteristics of 23 commercially available mediators for laccase. Electrochemical properties, interactions with laccases, and ability to degrade lignin were compared for selected mediators. Among them, NNDS has very similar electrochemical properties in terms of reversibility and redox potential (about 470 mV vs. Ag/AgCl at pH=7) compared to ABTS which is a well-known mediator. Specific activity of purified laccase from Cerrena unicolor was determined by both 2,2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 1-nitroso-2-naphthol -3,6-disulfonic acid (NNDS). The specific activity of the laccase was 23.2 units/mg with ABTS and 21.2 units/mg with NNDS. The electron exchange rate for NNDS with laccase was very similar to that for ABTS, which meant that NNDS had similar mediating capability to ABTS. Determining methanol concentration after reacting with laccase compared to lignin degradation capabilities of both ARTS and NNDS. ARTS or NNDS alone cannot degrade lignin, but in the presence of laccase enhanced the rate of lignin degradation. ABTS showed better activity in the beginning, and the reaction rate of NNDS with lignin was about a half of that of ABTS at 10 minute, but the final concentration of methanol produced in 1 hour was very similar each other. The reason for similar methanol concentration for both ABTS and NNDS can be interpreted as the initial activity of ABTS was better than that of NNDS, but ABTS would be inhibited laccase activity more during the incubation.

Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes

  • Choi, Young-Bong;Jeon, Won-Yong;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1485-1490
    • /
    • 2012
  • An electrochemical immunoassay based on osmium-hippuric acid (HA) conjugate films onto the electrode is presented for the detection of urinary HA. This is the first report on the use of the oxidative electropolymerization of 5-amino-1,10-phenanthroline (5-$NH_2$-phen) for immobilizing an antigen, osmium-conjugated HA. As a redox mediator, [Os(5-amino-1,10-phenanthroline)$_2$(4-aminomethylpyridine-HA)Cl]$^{+/2+}$ (Os-phen-HA) was successfully synthesized and electropolymerized onto the screen-printed carbon electrodes (SPCEs). The interaction between osmium-HA conjugate films and antibody-HA ($anti$-HA) was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrical signals were linearly proportional to urinary HA in the range of 0.1-5.0 mg/mL, which is sufficient for use as an immunosensor using a cutoff concentration of 2.0 mg/mL in urine samples. The proposed electrochemical immunoassay method can be extended to various applications for detecting a wide range of different small antigens in the health care area.

A Study on the Efficiency of Dye Sensitized Solar Cell Based on the Volume of Binder Addition (바인더 함량에 따른 염료감응 태양전지의 효율에 관한 연구)

  • Ki, Hyun-Chul;Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.878-881
    • /
    • 2013
  • In this study, we have fabricated the dye sensitized solar cell (DSSC) composed by a transparent conductive oxide (TCO), a nanocrystalline semiconductor film usually $TiO_2$, a sensitizer adsorbed on the surface of the semiconductor, an electrolyte containing a redox mediator and a counter electrode. The $TiO_2$ nanopowder was prepared by sol-gel methode. The HCl (hydrochloric acid) and TBAOH (Tetrabutyl amonium hydroxide) was added for improving the catalyst and distributed properties of $TiO_2$ nanopowder. Ammonium hydroixde was added in order to control the morphology and size of $TiO_2$ nano crystal. A $TiO_2$ paste for working electrode was prepared with the addition of HPC (hydroxypropyl cellulos) used as a binder of which volume was controled as 1.3, 1.5, 1.7, and 2.0%. The measured I-V curves of assembled DSSC showed that the cell with 1.7% HPC binder had the best efficiency of 6.79%.

Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures (양극산화된 TiO2 및 WO3 나노구조체로 구성된 광전기변색 소자 제작)

  • Lee, Sanghoon;Cha, Hyeongcheol;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.326-330
    • /
    • 2015
  • In this study, we demonstrate the photoelectrochromic devices composed of $TiO_2$ and $WO_3$ nanostructures prepared by anodization method. The morphology and the crystal structure of anodized $TiO_2$ nanotubes and $WO_3$ nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a $TiO_2$ nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at $450^{\circ}C$ for 1 hr. The photoelectrode of $TiO_2$ nanotube and the counter electrode of $WO_3$ nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM $I_2$ as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-$WO_3$ electrode system shows better electrochromic performance compared to $WO_3$ electrode.

Study on Morphology Investigation and Charge-transfer Property of Self-assembled Viologen Monolayers (자기조립된 Viologen 단분자막의 표면이미지 관찰과 계면전하이동 특성 연구)

  • Park Sang-Hyun;Lee Dong-Yun;Park Jae-Chul;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.246-249
    • /
    • 2006
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. We determined the time dependence on resonant frequency shift during self-assembly process and observed the morphology of self-assembled monolayers by STM and investigated the electrochemical behavior of SAMs by cyclic voltammetry. Electrochemical deposition of viologen was investigated using electrochemical quartz crystal microbalance(EQCM). The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redok reactions. The total frequency change was about 9.5 Hz, and 7.1 Hz. From the data, we could know the mass change was about 10.16 ng and 7.60 ng, respectively. Finally, the EQCM has been employed to monitor the electrochemically induced adsorption of self-assembled monolayers on Au surfaces.

Hydrogen Peroxide Induces Apoptosis of BJAB Cells Due to Formation of Hydroxyl Radicals Via Intracellular Iron-mediated Fenton Chemistry in Glucose Oxidase-mediated Oxidative Stress

  • Lee, Jeong-Chae;Son, Young-Ok;Choi, Ki-Choon;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2006
  • The aim of this study was to determine if hydrogen peroxide ($H_2O_2$) generated by glucose oxidase (GO) induces apoptosis or necrosis of BJAB cells and which radical is the direct mediator of cell death. We found that GO produced $H_2O_2$ continuously in low concentrations, similar to in vivo conditions, and decreased proliferation and cell viability in a dose-dependent manner. The GO-mediated cytotoxicity resulted from apoptosis, and was confirmed by monitoring the cells after H33342/Annexin V/propidium iodide staining. Decreases of mitochondrial membrane potential and intracellular glutathione level were found to be critical events in the $H_2O_2$-mediated apoptosis. Additional experiments revealed that $H_2O_2$ exerted its apoptotic action through the formation of hydroxyl radicals via the Fenton rather than the Haber-Weiss reaction. Moreover, intracellular redox-active iron, but not copper, participated in the $H_2O_2$-mediated apoptosis.

Electrochemical Properties of Viologen Self-Assembly Monolayer Using QCM (수정진동자를 이용한 Viologen Self-Assembly 단분자막의 전기화학적 특성)

  • Ock, J.Y.;Song, S.H.;Shin, H.K.;Park, J.C.;Chang, J.S.;Chang, S.M.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.403-406
    • /
    • 2002
  • Molecular self-assembled of surfactant viologen are of recent interest because they can from functional electroeds as well as micellar assemblies. which can be profitably utilized for display devices. photoelectrochemical studies and electrocatalysis as electron acceptor or electron mediator[1-3]. Fromherz et al studied the se1f-assembly of thiol and disulfide derivatives of viologens bearing long n-alkyl chains on Au electrode surface[4]. In this study, the electrochemical behavior of self-assembled viologen monolayer has been investigated with QCM, which has been known as nano-gram order mass detector. The self-assembly process of viologen was monitored using resonant frequency$({\Delta}F)$ and resonant resistance(R). The redox process of viologen was observed with resonant frequency$({\Delta}F)$.

  • PDF