• 제목/요약/키워드: redox current

검색결과 179건 처리시간 0.027초

Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

  • Gorin, Yves;Wauquier, Fabien
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.285-296
    • /
    • 2015
  • Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-${\beta}$. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.

Redox-Active Self-Assembled Monolayer on Au ultramicroelectrode and its Electrocatalytic Detection of p-aminophenol Oxidation

  • Kim, Yun Jee;Kim, Ki Jun;Jung, Seung Yeon;Hwang, You Jin;Kwon, Seong Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.170-176
    • /
    • 2019
  • Alkanethiol self-assembled monolayers (SAMs) and partially ferrocene (Fc) modifications were applied to the Au ultramicroelectrode (UME) rather than to standard sized electrodes with dimension of millimeters. The electron transfer mediation of the SAMs and Fc modified Au UME was investigated by using a p-aminophenol (p-AP) oxidation reaction via cyclic voltammetry. The electrocatalytic p-AP oxidation at the SAMs and Fc modified Au UME showed a much larger electrocatalytic current density than that at the standard sized electrode due to the fast mass transfer rate at the UME.

Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment (암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성)

  • Kim, Yesol;Cho, Seho;Park, Se-Kook;Jeon, Jae-Deok;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • 제25권3호
    • /
    • pp.292-299
    • /
    • 2014
  • In this study, nitrogen doped carbon felt (CFt) is prepared using thermal oxidation and liquid phase ammonia treatment to improve the efficiency for vanadium redox flow batteries (VRFB). The electrochemical properties of prepared CFt electrodes are investigated using cyclic voltammetry (CV) and charge/discharge test. The XPS result shows that the increase of liquid phase ammonia treatment temperature leads to the increased nitrogen functional group on the CFt surface. Redox reaction characteristics using CV reveal that the liquid phase ammonia treated CFt electrodes are more reversible than the thermally oxidized CFt. When CFt is treated by the liquid phase ammonia at $300^{\circ}C$, VRFB cell energy efficiency, voltage efficiency, and current efficiency are increased about 6.93%, 1.0%, and 4.5%, respectively, compared to those of the thermally oxidized CFt. These results are because nitrogen functional groups on CFt help to improve the electrochemical properties of redox reaction between electrode and electrolyte interface.

Influence of Redox Potential Current Density on Polarization Curves with Polypropylene Polymer

  • Park, Chil-Nam;Kim, Myung-Sun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.255-261
    • /
    • 2000
  • Experiments were carried out to measure the corrosion potential and current density variations in the polarization curves of polypropylene. In particular, the results were examined to identify those influences affecting the corrosion potential, such as temperature, pH, salt, and oxygen. The Tafel slope for the anodic dissolution was determined based on the polarization effect under various conditions. Furthermore, the optimum conditions for the most rapid transformation were establish based on a variety of conditions, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(I(sub)r/I(sub)f). This I(sub)r/I(sub)f value was then used to measure the critical corrosion sensitivity of polypropylene. The potentiodynamic parameters of corrosion were obtained using a Tafel plot.

  • PDF

Redox Reaction of Poly(ethyleneterephthalate) Polymer in Aprotic Solvent

  • Choi, Chil-Nami
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.47-53
    • /
    • 2001
  • We carroed our to measure the variations of potential with current density (polarization curves) for poly(ethyleneterephthalate). The results were particularly examined to identify the influences on corrosion potential and corrosion rate of various factors including temperature, pH, exposure time, salt, and enzyme. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum passive current density were designated as the relative corrosion sensitivity$(I_r/I_f)$. The mass transfer coefficient value$(\alpha)$ was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

Redox Reaction on Polarization Curve Variations of Polymer with Enzymes

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권3호
    • /
    • pp.165-171
    • /
    • 2000
  • Experiments were carried out to measure variations in the oxidation potential and current density using the polarization curves of polycarbonate. The results were then examined to identify the influences affecting the oxidation potential related to various conditions, such as temperature, pH, and oxydase(citrate and lipase). The lines representing the active anodic and cathodic dissolution shifted only slightly in the potential direction relative to temperature, pH, and the effect of the enzyme. The Tafel slope for the anodic and cathodic dissolution was determined such that the reversibility polarization was indicated as being effected by various conditions. The slope of the polarization curves describing the active-to-passive transition region shifted noticeably in their direction. Also, by varying the conditions, the optimum conditions for the most ready transform were identified, including temperature, pH, oxidation rate, and resistance of oxidation potential. The critical oxidation sensitivity(I(sub)r/I(sub)f) of the anodic current density peak and maximum passive current density was also determined, which is used in measuring the critical corrosion sensitivity of a polycarbonate.

  • PDF

Continuous Mediated Electrochemical Oxidation of Ethylene Glycol by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 에텔렌글리콜의 연속 매개전해 산화)

  • Kim, Ik-Seong;Park, Seung-Cho
    • Applied Chemistry for Engineering
    • /
    • 제16권5호
    • /
    • pp.635-640
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) is an aqueous process which oxidizes organics electrochemicallly at low temperatures and pressures. The useful process can be used to treat mixed wastes containing hazardous organics. This paper have studied MEO of ethylene glycol (EG) in nitric acids by Fe(III)/Fe(II) and Co(III)/Co(II) system. It investigated current density, supporting electrolyte concentration, hydraulic retention time, removal efficiency of EG by MEO. Removal efficiency of EG by MEO was superior in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, where MEO removal efficiency was 100 percent. In case of EG, the reactions were fast and good yields of carbon dioxide formation was observed.

A Study on the Electronic Properties and Redox Reaction of Europium(Ⅲ) Complexes in Aprotic Solvent (반 양성자성 용매속에서 Europium(Ⅲ) 착물에 대한 전자적 성질과 산화 · 환원 반응에 관한 연구)

  • Choe, Chil Nam;Son, Hyo Youl;Kim, Se Bong
    • Journal of the Korean Chemical Society
    • /
    • 제40권1호
    • /
    • pp.65-71
    • /
    • 1996
  • The chemical behaviour of the Eu(Ⅲ) complexes with organic ligands(tris[3-(trifluoromethylhydroxymethylene-camphorato)]) and tris[3-heptafluoropropylhydroxymethylene-camphorato)] has been investigated by the UV/vis-spectrophotometric, magnetic, and electrochemcial methods. The two or three energy absorption bands are observed by the spectra of these complexes. The magnitude of crystal field splitting energy, the spin pair energy and strength were obtained from the spectra of the complexes. These complexes are found to be delocalization, low-spin state, and strong bonding strenth of electron configuration. The magnetic dipolemoment are found to be diamagnetic. The redox reaction processes of complexes were investigated by cyclic voltammetry in aprotic solvent. The redox reaction processes of complexes are turned out to be single or double reaction with respect to one electron diffusion current.

  • PDF

Square Wave Voltammetry in Cathode Ray Tube Glass Melt Containing Different Polyvalent Ions (서로 다른 다가이온을 함유한 음극선관 전면유리 용융체의 Square Wave Voltammetry)

  • Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • 제44권6호
    • /
    • pp.297-302
    • /
    • 2007
  • With aids of square wave voltammetry (SWV) the redox behavior for various combination of polyvalent ions (Sb+Fe, Sb+Zn, Sb+Ce+Ti+Zn) was investigated in alkali-alkaline earth-silica CRT (Cathode Ray Tube) glass melts. The current-potential curve so called voltammogram was produced at temperature range of 1400 to $1000^{\circ}C$ under the scanned potential between 0 and -800 mV at 100 Hz. In the case of the Sb+Fe and Sb+Zn doped melts, peak for $Sb^{3+}/Sb^0$ shown voltammogram was shifted to negative direction comparing to the only Sb doped melts. However, according to voltammogram of Sb+Ce+Ti+Zn doped melt, Ti and Ce except Zn had hardly any influence on the redox reaction of Sb. Based on the temperature dependence of the peak potential, standard enthalpy (${\Delta}H^0$) and standard entropy (${\Delta}S^0$) for the reduction of $Fe^{3+}$ to $Fe^{2+}$, $Sb^{3+}$ to $Sb^0$, $Zn^{2+}$ to $Zn^0$ and $Ti^{2+}$ to $Ti^0$ in each polyvalent ion combination of CRT glass melts were calculated.

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.