DOI QR코드

DOI QR Code

Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

  • Gorin, Yves (Department of Medicine, University of Texas Health Science Center) ;
  • Wauquier, Fabien (Department of Medicine, University of Texas Health Science Center)
  • Received : 2015.01.09
  • Accepted : 2015.01.12
  • Published : 2015.04.30

Abstract

Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-${\beta}$. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.

Keywords

References

  1. Abboud, H.E. (1997). Growth factors and diabetic nephrology: an overview. Kidney Int. Supplement 60, S3-6.
  2. Ago, T., Kuroda, J., Pain, J., Fu, C., Li, H., and Sadoshima, J. (2010). Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ. Res. 106, 1253-1264. https://doi.org/10.1161/CIRCRESAHA.109.213116
  3. Altenhofer, S., Kleikers, P.W., Radermacher, K.A., Scheurer, P., Rob Hermans, J.J., Schiffers, P., Ho, H., Wingler, K., and Schmidt, H.H. (2012). The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell. Mol. Life Sci. 69, 2327-2343. https://doi.org/10.1007/s00018-012-1010-9
  4. Aoyama, T., Paik, Y.H., Watanabe, S., Laleu, B., Gaggini, F., Fioraso-Cartier, L., Molango, S., Heitz, F., Merlot, C., Szyndralewiez, C., et al. (2012). Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316-2327. https://doi.org/10.1002/hep.25938
  5. Asaba, K., Tojo, A., Onozato, M.L., Goto, A., Quinn, M.T., Fujita, T., and Wilcox, C.S. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 67, 1890-1898. https://doi.org/10.1111/j.1523-1755.2005.00287.x
  6. Barnes, J.L., and Gorin, Y. (2011). Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 79, 944-956. https://doi.org/10.1038/ki.2010.516
  7. Baynes, J.W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412. https://doi.org/10.2337/diab.40.4.405
  8. Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  9. Block, K., Eid, A., Griendling, K.K., Lee, D.Y., Wittrant, Y., and Gorin, Y. (2008). Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: role in mesangial cell hypertrophy and fibronectin expression. J. Biol. Chem. 283, 24061-24076. https://doi.org/10.1074/jbc.M803964200
  10. Block, K., Gorin, Y., and Abboud, H.E. (2009). Subcellular localization of Nox4 and regulation in diabetes. Proc. Natl. Acad. Sci. USA 106, 14385-14390. https://doi.org/10.1073/pnas.0906805106
  11. Block, K., Ricono, J.M., Lee, D.Y., Bhandari, B., Choudhury, G.G., Abboud, H.E., and Gorin, Y. (2006). Arachidonic acid-dependent activation of a p22(phox)-based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid. Redox Signal. 8, 1497-1508. https://doi.org/10.1089/ars.2006.8.1497
  12. Bondi, C.D., Manickam, N., Lee, D.Y., Block, K., Gorin, Y., Abboud, H.E., and Barnes, J.L. (2010). NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J. Am. Soc. Nephrol. 21, 93-102. https://doi.org/10.1681/ASN.2009020146
  13. Brandes, R.P., and Schroder, K. (2008). Composition and functions of vascular nicotinamide adenine dinucleotide phosphate oxidases. Trends Cardiovasc. Med. 18, 15-19. https://doi.org/10.1016/j.tcm.2007.11.001
  14. Brandes, R.P., Weissmann, N., and Schroder, K. (2010). NADPH oxidases in cardiovascular disease. Free Radic. Bio. Med. 49, 687-706. https://doi.org/10.1016/j.freeradbiomed.2010.04.030
  15. Brown, D.I., and Griendling, K.K. (2009). Nox proteins in signal transduction. Free Radic. Bio. Med. 47, 1239-1253. https://doi.org/10.1016/j.freeradbiomed.2009.07.023
  16. Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  17. Campbell, K.N., Raij, L., and Mundel, P. (2011). Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes. Curr. Diabetes Rev. 7, 3-7. https://doi.org/10.2174/157339911794273973
  18. Carnesecchi, S., Deffert, C., Donati, Y., Basset, O., Hinz, B., Preynat-Seauve, O., Guichard, C., Arbiser, J.L., Banfi, B., Pache, J.C., et al. (2011). A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal. 15, 607-619. https://doi.org/10.1089/ars.2010.3829
  19. Chai, D., Wang, B., Shen, L., Pu, J., Zhang, X.K., and He, B. (2008). RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells. Free Radic. Bio. Med. 44, 1334-1347. https://doi.org/10.1016/j.freeradbiomed.2007.12.022
  20. Chen, J., Chen, J.K., and Harris, R.C. (2012). Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Mol. Cell. Biol. 32, 981-991. https://doi.org/10.1128/MCB.06410-11
  21. Clempus, R.E., Sorescu, D., Dikalova, A.E., Pounkova, L., Jo, P., Sorescu, G.P., Schmidt, H.H., Lassegue, B., and Griendling, K.K. (2007). Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42-48. https://doi.org/10.1161/01.ATV.0000251500.94478.18
  22. Coughlan, M.T., Thorburn, D.R., Penfold, S.A., Laskowski, A., Harcourt, B.E., Sourris, K.C., Tan, A.L., Fukami, K., Thallas-Bonke, V., Nawroth, P.P., et al. (2009). RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol. 20, 742-752. https://doi.org/10.1681/ASN.2008050514
  23. Craven, P.A., Phillips, S.L., Melhem, M.F., Liachenko, J., and DeRubertis, F.R. (2001). Overexpression of manganese superoxide dismutase suppresses increases in collagen accumulation induced by culture of mesangial cells in high-media glucose. Metabolism 50, 1043-1048. https://doi.org/10.1053/meta.2001.25802
  24. Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P.J., Ariyan, S., Dikalov, S., and Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res. 97, 900-907. https://doi.org/10.1161/01.RES.0000187457.24338.3D
  25. Das, R., Xu, S., Quan, X., Nguyen, T.T., Kong, I.D., Chung, C.H., Lee, E.Y., Cha, S.K., and Park, K.S. (2014). Upregulation of mitochondrial Nox4 mediates TGF-beta-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Renal Physiol. 306, F155-167. https://doi.org/10.1152/ajprenal.00438.2013
  26. de Mochel, N.S., Seronello, S., Wang, S.H., Ito, C., Zheng, J.X., Liang, T.J., Lambeth, J.D., and Choi, J. (2010). Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52, 47-59. https://doi.org/10.1002/hep.23671
  27. Di Marco, E., Gray, S.P., Chew, P., Koulis, C., Ziegler, A., Szyndralewiez, C., Touyz, R.M., Schmidt, H.H., Cooper, M.E., Slattery, R., et al. (2014). Pharmacological inhibition of NOX reduces atherosclerotic lesions, vascular ROS and immune-inflammatory responses in diabetic Apoe(-/-) mice. Diabetologia 57, 633-642. https://doi.org/10.1007/s00125-013-3118-3
  28. Diaz, B., Shani, G., Pass, I., Anderson, D., Quintavalle, M., and Courtneidge, S.A. (2009). Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2, ra53.
  29. Dikalov, S. (2011). Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289-1301. https://doi.org/10.1016/j.freeradbiomed.2011.06.033
  30. Ding, G., Zhang, A., Huang, S., Pan, X., Zhen, G., Chen, R., and Yang, T. (2007). ANG II induces c-Jun NH2-terminal kinase activation and proliferation of human mesangial cells via redox-sensitive transactivation of the EGFR. Am. J. Physiol. Renal. Physiol. 293, F1889-1897. https://doi.org/10.1152/ajprenal.00112.2007
  31. Drummond, G.R., Selemidis, S., Griendling, K.K., and Sobey, C.G. (2011). Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. 10, 453-471.
  32. Eid, A.A., Gorin, Y., Fagg, B.M., Maalouf, R., Barnes, J.L., Block, K., and Abboud, H.E. (2009). Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58, 1201-1211. https://doi.org/10.2337/db08-1536
  33. Eid, A.A., Ford, B.M., Block, K., Kasinath, B.S., Gorin, Y., Ghosh-Choudhury, G., Barnes, J.L., and Abboud, H.E. (2010). AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 285, 37503-37512. https://doi.org/10.1074/jbc.M110.136796
  34. Eid, A.A., Ford, B.M., Bhandary, B., de Cassia Cavaglieri, R., Block, K., Barnes, J.L., Gorin, Y., Choudhury, G.G., and Abboud, H.E. (2013a). Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62, 2935-2947. https://doi.org/10.2337/db12-1504
  35. Eid, A.A., Lee, D.Y., Roman, L.J., Khazim, K., and Gorin, Y. (2013b). Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol. Cell. Biol. 33, 3439-3460. https://doi.org/10.1128/MCB.00217-13
  36. Etoh, T., Inoguchi, T., Kakimoto, M., Sonoda, N., Kobayashi, K., Kuroda, J., Sumimoto, H., and Nawata, H. (2003). Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibity by interventive insulin treatment. Diabetologia 46, 1428-1437. https://doi.org/10.1007/s00125-003-1205-6
  37. Forbes, J.M., Coughlan, M.T., and Cooper, M.E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57, 1446-1454. https://doi.org/10.2337/db08-0057
  38. Ford, B.M., Eid, A.A., Gooz, M., Barnes, J.L., Gorin, Y.C., and Abboud, H.E. (2013). ADAM17 mediates Nox4 expression and NADPH oxidase activity in the kidney cortex of OVE26 mice. Am. J. Physiol. Renal. Physiol. 305, F323-332. https://doi.org/10.1152/ajprenal.00522.2012
  39. Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., Wen, Z., Fang, H., Pang, Q., and Yi, F. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 32, 581-589. https://doi.org/10.1159/000322105
  40. Fujii, M., Inoguchi, T., Maeda, Y., Sasaki, S., Sawada, F., Saito, R., Kobayashi, K., Sumimoto, H., and Takayanagi, R. (2007). Pitavastatin ameliorates albuminuria and renal mesangial expansion by downregulating NOX4 in db/db mice. Kidney Int. 72, 473-480. https://doi.org/10.1038/sj.ki.5002366
  41. Fujii, M., Inoguchi, T., Sasaki, S., Maeda, Y., Zheng, J., Kobayashi, K., and Takayanagi, R. (2010). Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int. 78, 905-919. https://doi.org/10.1038/ki.2010.265
  42. Gaggini, F., Laleu, B., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., et al. (2011). Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine, -pyrazine and -oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem. 19, 6989-6999. https://doi.org/10.1016/j.bmc.2011.10.016
  43. Geiszt, M. (2006). NADPH oxidases: new kids on the block. Cardiov. Res. 71, 289-299. https://doi.org/10.1016/j.cardiores.2006.05.004
  44. Geiszt, M., Kopp, J.B., Varnai, P., and Leto, T.L. (2000). Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. USA 97, 8010-8014. https://doi.org/10.1073/pnas.130135897
  45. Giacco, F., and Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ. Res. 107, 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  46. Gill, P.S. and Wilcox, C.S. (2006). NADPH oxidases in the kidney. Antioxid. Redox Signal. 8, 1597-1607. https://doi.org/10.1089/ars.2006.8.1597
  47. Gojo, A., Utsunomiya, K., Taniguchi, K., Yokota, T., Ishizawa, S., Kanazawa, Y., Kurata, H., and Tajima, N. (2007). The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 568, 242-247. https://doi.org/10.1016/j.ejphar.2007.04.011
  48. Gorin, Y., and Block, K. (2013a). Nox4 and diabetic nephropathy: With a friend like this, who needs enemies? Free Radic. Biol. Med. 61C, 130-142.
  49. Gorin, Y., and Block, K. (2013b). Nox as a target for diabetic complications. Clin. Sci (Lond) 125, 361-382. https://doi.org/10.1042/CS20130065
  50. Gorin, Y., Block, K., Hernandez, J., Bhandari, B., Wagner, B., Barnes, J.L., and Abboud, H.E. (2005). Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 280, 39616-39626. https://doi.org/10.1074/jbc.M502412200
  51. Gorin, Y., Ricono, J.M., Kim, N.H., Bhandari, B., Choudhury, G.G., and Abboud, H.E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am. J. Physiol. Renal Physiol. 285, F219-229. https://doi.org/10.1152/ajprenal.00414.2002
  52. Gorin, Y., Ricono, J.M., Wagner, B., Kim, N.H., Bhandari, B., Choudhury, G.G., and Abboud, H.E. (2004). Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. Biochem. J. 381, 231-239. https://doi.org/10.1042/BJ20031614
  53. Gray, S.P., Di Marco, E., Okabe, J., Szyndralewiez, C., Heitz, F., Montezano, A.C., de Haan, J.B., Koulis, C., El-Osta, A., Andrews, K.L., et al. (2013). NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888-1902. https://doi.org/10.1161/CIRCULATIONAHA.112.132159
  54. Greiber, S., Munzel, T., Kastner, S., Muller, B., Schollmeyer, P., and Pavenstadt, H. (1998). NAD(P)H oxidase activity in cultured human podocytes: effects of adenosine triphosphate. Kidney Int. 53, 654-663. https://doi.org/10.1046/j.1523-1755.1998.00796.x
  55. Griendling, K.K., and FitzGerald, G.A. (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108, 1912-1916. https://doi.org/10.1161/01.CIR.0000093660.86242.BB
  56. Hannken, T., Schroeder, R., Stahl, R.A., and Wolf, G. (1998). Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int. 54, 1923-1933. https://doi.org/10.1046/j.1523-1755.1998.00212.x
  57. Hecker, L., Logsdon, N.J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., Meldrum, E., Sanders, Y.Y., and Thannickal, V.J. (2014). Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci. Trans. Med. 6, 231ra247.
  58. Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur, S., Martinez, F.J., and Thannickal, V.J. (2009). NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077-1081. https://doi.org/10.1038/nm.2005
  59. Hinokio, Y., Suzuki, S., Hirai, M., Chiba, M., Hirai, A., and Toyota, T. (1999). Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia 42, 995-998. https://doi.org/10.1007/s001250051258
  60. Holterman, C.E., Thibodeau, J.F., Towaij, C., Gutsol, A., Montezano, A.C., Parks, R.J., Cooper, M.E., Touyz, R.M., and Kennedy, C.R. (2014). Nephropathy and elevated BP in mice with podocytespecific NADPH oxidase 5 expression. J. Am. Soc. Nephrol. 25, 784-797. https://doi.org/10.1681/ASN.2013040371
  61. Hua, H., Munk, S., Goldberg, H., Fantus, I.G., and Whiteside, C.I. (2003). High glucose-suppressed endothelin-1 $Ca^{2+}$ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells. J. Biol. Chem. 278, 33951-33962. https://doi.org/10.1074/jbc.M302823200
  62. Hwang, I., Lee, J., Huh, J.Y., Park, J., Lee, H.B., Ho, Y.S., and Ha, H. (2012). Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61, 728-738. https://doi.org/10.2337/db11-0584
  63. Ito, N., Ruegg, U.T., Kudo, A., Miyagoe-Suzuki, Y., and Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat. Med. 19, 101-106. https://doi.org/10.1038/nm.3019
  64. Jaquet, V., Scapozza, L., Clark, R.A., Krause, K.H., and Lambeth, J.D. (2009). Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. Redox Signal. 11, 2535-2552. https://doi.org/10.1089/ars.2009.2585
  65. Jeong, S.I., Kim, S.J., Kwon, T.H., Yu, K.Y., and Kim, S.Y. (2012). Schizandrin prevents damage of murine mesangial cells via blocking NADPH oxidase-induced ROS signaling in high glucose. Food Chem. Toxicol. 50, 1045-1053. https://doi.org/10.1016/j.fct.2011.11.028
  66. Jha, J.C., Gray, S.P., Barit, D., Okabe, J., El-Osta, A., Namikoshi, T., Thallas-Bonke, V., Wingler, K., Szyndralewiez, C., Heitz, F., et al. (2014). Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237-1254. https://doi.org/10.1681/ASN.2013070810
  67. Jiang, J.X., Chen, X., Serizawa, N., Szyndralewiez, C., Page, P., Schroder, K., Brandes, R.P., Devaraj, S., and Torok, N.J. (2012). Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 53, 289-296. https://doi.org/10.1016/j.freeradbiomed.2012.05.007
  68. Jones, S.A., Hancock, J.T., Jones, O.T., Neubauer, A., and Topley, N. (1995). The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox. J. Am. Soc. Nephrol. 5, 1483-1491.
  69. Kanwar, Y.S., Sun, L., Xie, P., Liu, F.Y., and Chen, S. (2011). A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann. Rev. Pathol. 6, 395-423. https://doi.org/10.1146/annurev.pathol.4.110807.092150
  70. Kanwar, Y.S., Wada, J., Sun, L., Xie, P., Wallner, E.I., Chen, S., Chugh, S., and Danesh, F.R. (2008). Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med. 233, 4-11. https://doi.org/10.3181/0705-MR-134
  71. Kashihara, N., Haruna, Y., Kondeti, V.K., and Kanwar, Y.S. (2010). Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 17, 4256-4269. https://doi.org/10.2174/092986710793348581
  72. Khazim, K., Gorin, Y., Cavaglieri, R.C., Abboud, H.E., and Fanti, P. (2013). The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am. J. Physiol. Renal Physiol. 305, F691-700. https://doi.org/10.1152/ajprenal.00028.2013
  73. Kim, J.A., Neupane, G.P., Lee, E.S., Jeong, B.S., Park, B.C., and Thapa, P. (2011). NADPH oxidase inhibitors: a patent review. Expert Opin. Ther. Pat. 21, 1147-1158. https://doi.org/10.1517/13543776.2011.584870
  74. Kim, S.M., Kim, Y.G., Jeong, K.H., Lee, S.H., Lee, T.W., Ihm, C.G., and Moon, J.Y. (2012). Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 7, e39739. https://doi.org/10.1371/journal.pone.0039739
  75. Kiritoshi, S., Nishikawa, T., Sonoda, K., Kukidome, D., Senokuchi, T., Matsuo, T., Matsumura, T., Tokunaga, H., Brownlee, M., and Araki, E. (2003). Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52, 2570-2577. https://doi.org/10.2337/diabetes.52.10.2570
  76. Kitada, M., Koya, D., Sugimoto, T., Isono, M., Araki, S., Kashiwagi, A., and Haneda, M. (2003). Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes 52, 2603-2614. https://doi.org/10.2337/diabetes.52.10.2603
  77. Kitada, M., Kume, S., Imaizumi, N., and Koya, D. (2011). Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60, 634-643. https://doi.org/10.2337/db10-0386
  78. Koya, D., Hayashi, K., Kitada, M., Kashiwagi, A., Kikkawa, R., and Haneda, M. (2003). Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J. Am. Soc. Nephrol. 14, S250-253. https://doi.org/10.1097/01.ASN.0000077412.07578.44
  79. Koziel, R., Pircher, H., Kratochwil, M., Lener, B., Hermann, M., Dencher, N.A., and Jansen-Durr, P. (2013). Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem. J. 452, 231-239. https://doi.org/10.1042/BJ20121778
  80. Kuroda, J., Nakagawa, K., Yamasaki, T., Nakamura, K., Takeya, R., Kuribayashi, F., Imajoh-Ohmi, S., Igarashi, K., Shibata, Y., Sueishi, K., et al. (2005). The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10, 1139-1151. https://doi.org/10.1111/j.1365-2443.2005.00907.x
  81. Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M.D., and Sadoshima, J. (2010). NADPH oxidase 4 (Nox4). is a major source of oxidative stress in the failing heart. Proc. Natl. Acad. Sci. USA 107, 15565-15570. https://doi.org/10.1073/pnas.1002178107
  82. Kwan, J., Wang, H., Munk, S., Xia, L., Goldberg, H.J., and Whiteside, C.I. (2005). In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney Int. 68, 2526-2541. https://doi.org/10.1111/j.1523-1755.2005.00660.x
  83. Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., et al. (2010). First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4). inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715-7730. https://doi.org/10.1021/jm100773e
  84. Lambeth, J.D. (2007). Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic. Biol. Med. 43, 332-347. https://doi.org/10.1016/j.freeradbiomed.2007.03.027
  85. Lambeth, J.D., Kawahara, T., and Diebold, B. (2007). Regulation of Nox and Duox enzymatic activity and expression. Free Radic. Biol. Med. 43, 319-331. https://doi.org/10.1016/j.freeradbiomed.2007.03.028
  86. Lambeth, J.D., Krause, K.H., and Clark, R.A. (2008). NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339-363. https://doi.org/10.1007/s00281-008-0123-6
  87. Lassegue, B., and Clempus, R.E. (2003). Vascular NAD(P).H oxidases: specific features, expression, and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R277-297. https://doi.org/10.1152/ajpregu.00758.2002
  88. Lassegue, B., and Griendling, K.K. (2010). NADPH oxidases: functions and pathologies in the vasculature. Arterioscler. Thromb. Vasc. Biol. 30, 653-661. https://doi.org/10.1161/ATVBAHA.108.181610
  89. Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S.L., Lambeth, J.D., and Griendling, K.K. (2001). Novel gp91(phox). homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888-894. https://doi.org/10.1161/hh0901.090299
  90. Lassegue, B., San Martin, A. and Griendling, K.K. (2012). Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
  91. Lavrentyev, E.N., and Malik, K.U. (2009). High glucose-induced Nox1-derived superoxides downregulate PKC-betaII, which subsequently decreases ACE2 expression and ANG(1-7). formation in rat VSMCs. Am. J. Physiol. Heart Circ. Physiol. 296, H106-118. https://doi.org/10.1152/ajpheart.00239.2008
  92. Lee, H.B., Yu, M.R., Yang, Y., Jiang, Z. and Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S241-245. https://doi.org/10.1097/01.ASN.0000077410.66390.0F
  93. Lee, D.Y., Wauquier, F., Eid, A.A., Roman, L.J., Ghosh-Choudhury, G., Khazim, K., Block, K., and Gorin, Y. (2013a). Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II: role of mitochondrial reactive oxygen species. J. Biol. Chem. 288, 28668-28686. https://doi.org/10.1074/jbc.M113.470971
  94. Lee, J.H., Kim, J.H., Kim, J.S., Chang, J.W., Kim, S.B., Park, J.S. and Lee, S.K. (2013b). AMP-activated protein kinase inhibits TGF-beta-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am. J. Physiol. Renal Physiol. 304, F686-697. https://doi.org/10.1152/ajprenal.00148.2012
  95. Liu, G.C., Fang, F., Zhou, J., Koulajian, K., Yang, S., Lam, L., Reich, H.N., John, R., Herzenberg, A.M., Giacca, A., et al. (2012). Deletion of p47phox attenuates the progression of diabetic nephropathy and reduces the severity of diabetes in the Akita mouse. Diabetologia 55, 2522-2532. https://doi.org/10.1007/s00125-012-2586-1
  96. Liu, R.M., Choi, J., Wu, J.H., Gaston Pravia, K.A., Lewis, K.M., Brand, J.D., Mochel, N.S., Krzywanski, D.M., Lambeth, J.D., Hagood, J.S., et al. (2010). Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J. Biol. Chem. 285, 16239-16247. https://doi.org/10.1074/jbc.M110.111732
  97. Lyle, A.N., Deshpande, N.N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., Papaharalambus, C., Lassegue, B. and Griendling, K.K. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249-259. https://doi.org/10.1161/CIRCRESAHA.109.193722
  98. Maalouf, R.M., Eid, A.A., Gorin, Y.C., Block, K., Escobar, G.P., Bailey, S., and Abboud, H.E. (2012). Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am. J. Physiol. Cell Physiol. 302, C597-604. https://doi.org/10.1152/ajpcell.00331.2011
  99. Maeda, Y., Inoguchi, T., Takei, R., Sawada, F., Sasaki, S., Fujii, M., Kobayashi, K., Urata, H., Nishiyama, A., and Takayanagi, R. (2010). Inhibition of chymase protects against diabetes-induced oxidative stress and renal dysfunction in hamsters. Am. J. Physiol. Renal Physiol. 299, F1328-1338. https://doi.org/10.1152/ajprenal.00337.2010
  100. Mahadev, K., Motoshima, H., Wu, X., Ruddy, J.M., Arnold, R.S., Cheng, G., Lambeth, J.D., and Goldstein, B.J. (2004). The NAD(P).H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol. Cell. Biol. 24, 1844-1854. https://doi.org/10.1128/MCB.24.5.1844-1854.2004
  101. Manickam, N., Patel, M., Griendling, K.K., Gorin, Y., and Barnes, J.L. (2014). RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am. J. Physiol. Renal Physiol. 307, F159-171. https://doi.org/10.1152/ajprenal.00546.2013
  102. McCarty, M.F., Barroso-Aranda, J., and Contreras, F. (2009). AMP-activated kinase may suppress NADPH oxidase activation in vascular tissues. Med. Hypotheses 72, 468-470. https://doi.org/10.1016/j.mehy.2008.12.024
  103. Meng, D., Lv, D.D., and Fang, J. (2008). Insulin-like growth factor-I induces reactive oxygen species production and cell migration through Nox4 and Rac1 in vascular smooth muscle cells. Cardiov. Res. 80, 299-308. https://doi.org/10.1093/cvr/cvn173
  104. Menini, S., Iacobini, C., Ricci, C., Oddi, G., Pesce, C., Pugliese, F., Block, K., Abboud, H.E., Giorgio, M., Migliaccio, E., et al. (2007). Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia 50, 1997-2007. https://doi.org/10.1007/s00125-007-0728-7
  105. Mittal, M., Roth, M., Konig, P., Hofmann, S., Dony, E., Goyal, P., Selbitz, A.C., Schermuly, R.T., Ghofrani, H.A., Kwapiszewska, G., et al. (2007). Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ. Res. 101, 258-267. https://doi.org/10.1161/CIRCRESAHA.107.148015
  106. Miyata, K., Rahman, M., Shokoji, T., Nagai, Y., Zhang, G.X., Sun, G.P., Kimura, S., Yukimura, T., Kiyomoto, H., Kohno, M., et al. (2005). Aldosterone stimulates reactive oxygen species production through activation of NADPH oxidase in rat mesangial cells. J. Am. Soc. Nephrol. 16, 2906-2912. https://doi.org/10.1681/ASN.2005040390
  107. Moe, K.T., Aulia, S., Jiang, F., Chua, Y.L., Koh, T.H., Wong, M.C. and Dusting, G.J. (2006). Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J. Cell. Mol. Med. 10, 231-239. https://doi.org/10.1111/j.1582-4934.2006.tb00304.x
  108. New, D.D., Block, K., Bhandhari, B., Gorin, Y., and Abboud, H.E. (2012). IGF-I increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 302, C122-130. https://doi.org/10.1152/ajpcell.00141.2011
  109. Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M.A., Beebe, D., Oates, P.J., Hammes, H.P., et al. (2000). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790. https://doi.org/10.1038/35008121
  110. Nistala, R., Whaley-Connell, A., and Sowers, J.R. (2008). Redox control of renal function and hypertension. Antioxid. Redox Signal. 10, 2047-2089. https://doi.org/10.1089/ars.2008.2034
  111. Octavia, Y., Brunner-La Rocca, H.P., and Moens, A.L. (2012). NADPH oxidase-dependent oxidative stress in the failing heart: From pathogenic roles to therapeutic approach. Free Radic. Biol. Med. 52, 291-297. https://doi.org/10.1016/j.freeradbiomed.2011.10.482
  112. Ohshiro, Y., Ma, R.C., Yasuda, Y., Hiraoka-Yamamoto, J., Clermont, A.C., Isshiki, K., Yagi, K., Arikawa, E., Kern, T.S., and King, G.L. (2006). Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 55, 3112-3120. https://doi.org/10.2337/db06-0895
  113. Papadimitriou, A., Peixoto, E.B., Silva, K.C., Lopes de Faria, J.M., and Lopes de Faria, J.B. (2014). Increase in AMPK brought about by cocoa is renoprotective in experimental diabetes mellitus by reducing NOX4/TGFbeta-1 signaling. J. Nutr. Biochem. 25, 773-784. https://doi.org/10.1016/j.jnutbio.2014.03.010
  114. Paravicini, T.M., and Touyz, R.M. (2008). NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31 Suppl 2, S170-180. https://doi.org/10.2337/dc08-s247
  115. Pedruzzi, E., Guichard, C., Ollivier, V., Driss, F., Fay, M., Prunet, C., Marie, J.C., Pouzet, C., Samadi, M., Elbim, C., et al. (2004). NAD(P).H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol. Cell. Biol. 24, 10703-10717. https://doi.org/10.1128/MCB.24.24.10703-10717.2004
  116. Peng, Z.Z., Hu, G.Y., Shen, H., Wang, L., Ning, W.B., Xie, Y.Y., Wang, N.S., Li, B.X., Tang, Y.T., and Tao, L.J. (2009). Fluorofenidone attenuates collagen I and transforming growth factor-beta1 expression through a nicotinamide adenine dinucleotide phosphate oxidase-dependent way in NRK-52E cells. Nephrology 14, 565-572. https://doi.org/10.1111/j.1440-1797.2009.01129.x
  117. Peshavariya, H., Jiang, F., Taylor, C.J., Selemidis, S., Chang, C.W., and Dusting, G.J. (2009). Translation-linked mRNA destabilization accompanying serum-induced Nox4 expression in human endothelial cells. Antioxid. Redox Signal. 11, 2399-2408. https://doi.org/10.1089/ars.2009.2579
  118. Peshavariya, H.M., Dusting, G.J. and Selemidis, S. (2007). Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic. Res. 41, 699-712. https://doi.org/10.1080/10715760701297354
  119. Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., and Angielski, S. (2011). High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. J. Cell. Biochem. 112, 1661-1672. https://doi.org/10.1002/jcb.23088
  120. Piwkowska, A., Rogacka, D., Jankowski, M., Dominiczak, M.H., Stepinski, J.K. and Angielski, S. (2010). Metformin induces suppression of NAD(P).H oxidase activity in podocytes. Biochem. Biophys. Res. Commun. 393, 268-273. https://doi.org/10.1016/j.bbrc.2010.01.119
  121. Pleskova, M., Beck, K.F., Behrens, M.H., Huwiler, A., Fichtlscherer, B., Wingerter, O., Brandes, R.P., Mulsch, A. and Pfeilschifter, J. (2006). Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells. FASEB J. 20, 139-141. https://doi.org/10.1096/fj.05-3791fje
  122. Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S.T. and Lee, H.B. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16, 667-675. https://doi.org/10.1681/ASN.2004050425
  123. Rincon-Choles, H., Kasinath, B.S., Gorin, Y. and Abboud, H.E. (2002). Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int. Supplement S8-11.
  124. Rivera, J., Sobey, C.G., Walduck, A.K. and Drummond, G.R. (2010). Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep. 15, 50-63. https://doi.org/10.1179/174329210X12650506623401
  125. Schnackenberg, C.G. (2002). Oxygen radicals in cardiovascular-renal disease. Curr. Opin. Pharmacol. 2, 121-125. https://doi.org/10.1016/S1471-4892(02)00133-9
  126. Schuhmacher, S., Foretz, M., Knorr, M., Jansen, T., Hortmann, M., Wenzel, P., Oelze, M., Kleschyov, A.L., Daiber, A., Keaney, J.F., Jr., et al. (2011). alpha1AMP-activated protein kinase preserves endothelial function during chronic angiotensin II treatment by limiting Nox2 upregulation. Arterioscler. Thromb. Vasc. Biol. 31, 560-566. https://doi.org/10.1161/ATVBAHA.110.219543
  127. Sedeek, M., Callera, G., Montezano, A., Gutsol, A., Heitz, F., Szyndralewiez, C., Page, P., Kennedy, C.R., Burns, K.D., Touyz, R.M., et al. (2010). Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am. J. Physiol. Renal Physiol. 299, F1348-1358. https://doi.org/10.1152/ajprenal.00028.2010
  128. Sedeek, M., Gutsol, A., Montezano, A.C., Burger, D., Nguyen Dinh Cat, A., Kennedy, C.R., Burns, K.D., Cooper, M.E., Jandeleit-Dahm, K., Page, P., et al. (2013). Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin. Sci. 124, 191-202. https://doi.org/10.1042/CS20120330
  129. Sedeek, M., Hebert, R.L., Kennedy, C.R., Burns, K.D. and Touyz, R.M. (2009). Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr. Opin. Nephrol. Hypertens. 18, 122-127. https://doi.org/10.1097/MNH.0b013e32832923c3
  130. Sedeek, M., Montezano, A.C., Hebert, R.L., Gray, S.P., Di Marco, E., Jha, J.C., Cooper, M.E., Jandeleit-Dahm, K., Schiffrin, E.L., Wilkinson-Berka, J.L., et al. (2012). Oxidative stress, Nox isoforms and complications of diabetes--potential targets for novel therapies. J. Cardiovasc. Transl. Res. 5, 509-518. https://doi.org/10.1007/s12265-012-9387-2
  131. Selemidis, S., Sobey, C.G., Wingler, K., Schmidt, H.H., and Drummond, G.R. (2008). NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol. Ther. 120, 254-291. https://doi.org/10.1016/j.pharmthera.2008.08.005
  132. Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., Sienkiewicz, A., Forro, L., Schlegel, W., and Krause, K.H. (2007). NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 406, 105-114. https://doi.org/10.1042/BJ20061903
  133. Shah, A., Xia, L., Goldberg, H., Lee, K.W., Quaggin, S.E., and Fantus, I.G. (2013). Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J. Biol. Chem. 288, 6835-6848. https://doi.org/10.1074/jbc.M112.419101
  134. Sharma, K., Ramachandrarao, S., Qiu, G., Usui, H.K., Zhu, Y., Dunn, S.R., Ouedraogo, R., Hough, K., McCue, P., Chan, L., et al. (2008). Adiponectin regulates albuminuria and podocyte function in mice. J. Clin. Invest. 118, 1645-1656.
  135. Shiose, A., Kuroda, J., Tsuruya, K., Hirai, M., Hirakata, H., Naito, S., Hattori, M., Sakaki, Y., and Sumimoto, H. (2001). A novel superoxide-producing NAD(P).H oxidase in kidney. J. Biolo. Chem. 276, 1417-1423. https://doi.org/10.1074/jbc.M007597200
  136. Singh, D.K., Winocour, P., and Farrington, K. (2011). Oxidative stress in early diabetic nephropathy: fueling the fire. Nat. Rev. 7, 176-184.
  137. Siu, K.L., Lotz, C., Ping, P., and Cai, H. (2015). Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J. Mol. Cell Cardiol. 78, 174-185. https://doi.org/10.1016/j.yjmcc.2014.07.005
  138. Son, S.M., Whalin, M.K., Harrison, D.G., Taylor, W.R., and Griendling, K.K. (2004). Oxidative stress and diabetic vascular complications. Curr. Diabetes Rep. 4, 247-252. https://doi.org/10.1007/s11892-004-0075-8
  139. Sonta, T., Inoguchi, T., Matsumoto, S., Yasukawa, K., Inuo, M., Tsubouchi, H., Sonoda, N., Kobayashi, K., Utsumi, H., and Nawata, H. (2005). In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker. Biochem. Biophys. Res. Commun. 330, 415-422. https://doi.org/10.1016/j.bbrc.2005.02.174
  140. Stanton, R.C. (2011). Oxidative stress and diabetic kidney disease. Curr. Diabetes Rep. 11, 330-336. https://doi.org/10.1007/s11892-011-0196-9
  141. Sturrock, A., Cahill, B., Norman, K., Huecksteadt, T.P., Hill, K., Sanders, K., Karwande, S.V., Stringham, J.C., Bull, D.A., Gleich, M., et al. (2006). Transforming growth factor-beta1 induces Nox4 NAD(P).H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L661-L673. https://doi.org/10.1152/ajplung.00269.2005
  142. Takac, I., Schroder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J.D., Shah, A.M., Morel, F. and Brandes, R.P. (2011). The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 286, 13304-13313. https://doi.org/10.1074/jbc.M110.192138
  143. Takao, T., Horino, T., Kagawa, T., Matsumoto, R., Shimamura, Y., Ogata, K., Inoue, K., Taniguchi, Y., Taguchi, T., Morita, T., et al. (2011). Possible involvement of intracellular angiotensin II receptor in high-glucose-induced damage in renal proximal tubular cells. J. Nephrol. 24, 218-224. https://doi.org/10.5301/JN.2010.5785
  144. Thallas-Bonke, V., Thorpe, S.R., Coughlan, M.T., Fukami, K., Yap, F.Y., Sourris, K.C., Penfold, S.A., Bach, L.A., Cooper, M.E. and Forbes, J.M. (2008). Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460-469. https://doi.org/10.2337/db07-1119
  145. Thallas-Bonke, V., Jha, J.C., Gray, S.P., Barit, D., Haller, H., Schmidt, H.H., Coughlan, M.T., Cooper, M.E., Forbes, J.M. and Jandeleit-Dahm, K.A. (2014). Nox-4 deletion reduces oxidative stress and injury by PKC-alpha-associated mechanisms in diabetic nephropathy. Physiol. Rep. 2 pii: e1219.
  146. Ushio-Fukai, M. (2006). Localizing NADPH oxidase-derived ROS. Sci. STKE 2006, re8.
  147. Varga, Z.V., Kupai, K., Szucs, G., Gaspar, R., Paloczi, J., Farago, N., Zvara, A., Puskas, L.G., Razga, Z., Tiszlavicz, L., et al. (2013). MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J. Mol. Cell. Cardiol. 62, 111-121. https://doi.org/10.1016/j.yjmcc.2013.05.009
  148. Vasavada, N., and Agarwal, R. (2005). Role of oxidative stress in diabetic nephropathy. Adv. Chronic. Kidney Dis. 12, 146-154. https://doi.org/10.1053/j.ackd.2005.01.001
  149. Vendrov, A.E., Madamanchi, N.R., Niu, X.L., Molnar, K.C., Runge, M., Szyndralewiez, C., Page, P., and Runge, M.S. (2010). NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem. 285, 26545-26557. https://doi.org/10.1074/jbc.M110.143917
  150. Wang, S., Zhang, M., Liang, B., Xu, J., Xie, Z., Liu, C., Viollet, B., Yan, D., and Zou, M.H. (2010). AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ. Res. 106, 1117-1128. https://doi.org/10.1161/CIRCRESAHA.109.212530
  151. Wei, X.F., Zhou, Q.G., Hou, F.F., Liu, B.Y., and Liang, M. (2009). Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. Am. J. Physiol. Renal Physiol. 296, F427-437. https://doi.org/10.1152/ajprenal.90536.2008
  152. Whaley-Connell, A., Habibi, J., Nistala, R., Cooper, S.A., Karuparthi, P.R., Hayden, M.R., Rehmer, N., DeMarco, V.G., Andresen, B.T., Wei, Y., et al. (2008). Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension 51, 474-480. https://doi.org/10.1161/HYPERTENSIONAHA.107.102467
  153. Whiteside, C., Wang, H., Xia, L., Munk, S., Goldberg, H.J., and Fantus, I.G. (2009). Rosiglitazone prevents high glucose-induced vascular endothelial growth factor and collagen IV expression in cultured mesangial cells. Exp. Diabetes Res. 2009, 910783.
  154. Wilkinson-Berka, J.L., Deliyanti, D., Rana, I., Miller, A.G., Agrotis, A., Armani, R., Szyndralewiez, C., Wingler, K., Touyz, R.M., Cooper, M.E., et al. (2014). NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid. Redox Signal. 20, 2726-2740. https://doi.org/10.1089/ars.2013.5357
  155. Williams, C.R. and Gooch, J.L. (2014). Calcineurin Abeta regulates NADPH oxidase (Nox). expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose. J. Biol. Chem. 289, 4896-4905. https://doi.org/10.1074/jbc.M113.514869
  156. Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M., and Schmidt, H.H. (2001). Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456-1464. https://doi.org/10.1016/S0891-5849(01)00727-4
  157. Wu, R.F., Ma, Z., Myers, D.P., and Terada, L.S. (2007). HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. J. Biol. Chem. 282, 37412-37419. https://doi.org/10.1074/jbc.M704481200
  158. Xia, L., Wang, H., Goldberg, H.J., Munk, S., Fantus, I.G., and Whiteside, C.I. (2006). Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am. J. Physiol. Renal Physiol. 290, F345-356. https://doi.org/10.1152/ajprenal.00119.2005
  159. Xia, L., Wang, H., Munk, S., Kwan, J., Goldberg, H.J., Fantus, I.G., and Whiteside, C.I. (2008). High glucose activates PKC-zeta and NADPH oxidase through autocrine TGF-beta1 signaling in mesangial cells. Am. J. Physiol. Renal Physiol. 295, F1705-1714. https://doi.org/10.1152/ajprenal.00043.2008
  160. Xu, Y., Ruan, S., Xie, H., and Lin, J. (2010). Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int. J. Mol. Med. 26, 679-690.
  161. Yamagishi, S., Nakamura, K., Ueda, S., Kato, S., and Imaizumi, T. (2005). Pigment epithelium-derived factor (PEDF) blocks angiotensin II signaling in endothelial cells via suppression of NADPH oxidase: a novel anti-oxidative mechanism of PEDF. Cell Tissue Res. 320, 437-445. https://doi.org/10.1007/s00441-005-1094-8
  162. You, Y.H., Okada, S., Ly, S., Jandeleit-Dahm, K., Barit, D., Namikoshi, T. and Sharma, K. (2013). Role of Nox2 in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 304, F840-848. https://doi.org/10.1152/ajprenal.00511.2012
  163. Yu, L., Liu, Y., Wu, Y., Liu, Q., Feng, J., Gu, X., Xiong, Y., Fan, Q., and Ye, J. (2014a). Smad3/Nox4-mediated mitochondrial dysfunction plays a crucial role in puromycin aminonucleoside-induced podocyte damage. Cell. Signal. 26, 2979-2991. https://doi.org/10.1016/j.cellsig.2014.08.030
  164. Yu, P., Han, W., Villar, V.A., Yang, Y., Lu, Q., Lee, H., Li, F., Quinn, M.T., Gildea, J.J., Felder, R.A., et al. (2014b). Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2, 570-579. https://doi.org/10.1016/j.redox.2014.01.020
  165. Zhang, H., Jiang, Z., Chang, J., Li, X., Zhu, H., Lan, H.Y., Zhou, S.F., and Yu, X. (2009). Role of NAD(P).H oxidase in transforming growth factor-beta1-induced monocyte chemoattractant protein-1 and interleukin-6 expression in rat renal tubular epithelial cells. Nephrology 14, 302-310. https://doi.org/10.1111/j.1440-1797.2008.01072.x
  166. Zhang, L., Pang, S., Deng, B., Qian, L., Chen, J., Zou, J., Zheng, J., Yang, L., Zhang, C., Chen, X., et al. (2012). High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-kappaB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int. J. Biochem. Cell Biol. 44, 629-638. https://doi.org/10.1016/j.biocel.2012.01.001
  167. Ziyadeh, F.N., and Wolf, G. (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr. Diabetes Rev. 4, 39-45. https://doi.org/10.2174/157339908783502370

Cited by

  1. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update vol.2016, 2016, https://doi.org/10.1155/2016/7813072
  2. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage vol.6, pp.1, 2016, https://doi.org/10.1038/srep26854
  3. The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice vol.6, 2015, https://doi.org/10.3389/fphys.2015.00247
  4. Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice vol.2016, 2016, https://doi.org/10.1155/2016/2968462
  5. Comprehensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22229-5
  6. Molecular basis of the counteraction by calcium channel blockers of cyclosporine nephrotoxicity vol.315, pp.3, 2018, https://doi.org/10.1152/ajprenal.00275.2017
  7. Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease vol.2018, pp.2314-6753, 2018, https://doi.org/10.1155/2018/3405695
  8. An Atherogenic Paigen-Diet Aggravates Nephropathy in Type 2 Diabetic OLETF Rats vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0143979
  9. Pathophysiology of gadolinium-associated systemic fibrosis vol.311, pp.1, 2016, https://doi.org/10.1152/ajprenal.00166.2016
  10. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia vol.21, pp.3, 2015, https://doi.org/10.1007/s11325-016-1449-2
  11. Curcumin attenuates oxidative stress in liver in Type 1 diabetic rats vol.12, pp.1, 2015, https://doi.org/10.1515/biol-2017-0053
  12. Atorvastatin alleviates iodinated contrast media-induced cytotoxicity in human proximal renal tubular epithelial cells vol.14, pp.4, 2015, https://doi.org/10.3892/etm.2017.4859
  13. Cardiac and renal upregulation of Nox2 and NF ‐ κ B and repression of Nox4 and Nrf2 in season‐ and diabetes‐mediated models of vascular oxidative stress in guinea‐pi vol.5, pp.20, 2017, https://doi.org/10.14814/phy2.13474
  14. Proteomic and bioinformatic discovery of biomarkers for diabetic nephropathy vol.17, pp.None, 2015, https://doi.org/10.17179/excli2018-1150
  15. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury vol.13, pp.1, 2015, https://doi.org/10.1371/journal.pone.0191034
  16. TGF-β-mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury vol.73, pp.4, 2018, https://doi.org/10.1093/jac/dkx479
  17. A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease vol.29, pp.7, 2015, https://doi.org/10.1681/asn.2018030280
  18. Recent advances in the pathogenesis of microvascular complications in diabetes vol.42, pp.3, 2015, https://doi.org/10.1007/s12272-019-01130-3
  19. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy vol.71, pp.3, 2015, https://doi.org/10.1111/jphp.13043
  20. Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria vol.95, pp.4, 2015, https://doi.org/10.1016/j.kint.2018.10.032
  21. NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia vol.14, pp.7, 2015, https://doi.org/10.1371/journal.pone.0219483
  22. NADPH oxidase 4 mediates TGF-β1/Smad signaling pathway induced acute kidney injury in hypoxia vol.14, pp.7, 2015, https://doi.org/10.1371/journal.pone.0219483
  23. Interplay between RNA-binding protein HuR and Nox4 as a novel therapeutic target in diabetic kidney disease vol.36, pp.None, 2015, https://doi.org/10.1016/j.molmet.2020.02.011
  24. Molecular Mechanisms of Apoptosis of Glomerular Podocytes in Diabetic Nephropathy vol.14, pp.3, 2015, https://doi.org/10.1134/s1990747820030058
  25. Salvianolate ameliorates oxidative stress and podocyte injury through modulation of NOX4 activity in db/db mice vol.25, pp.2, 2021, https://doi.org/10.1111/jcmm.16165