DOI QR코드

DOI QR Code

Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

  • LaBarge, Samuel (Department of Orthopaedic Surgery, University of California) ;
  • Migdal, Christopher (Department of Orthopaedic Surgery, University of California) ;
  • Schenk, Simon (Department of Orthopaedic Surgery, University of California)
  • Received : 2015.01.27
  • Accepted : 2015.01.30
  • Published : 2015.04.30

Abstract

Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.

Keywords

References

  1. Arora, A., and Dey, C.S. (2014). SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim. Biophys. Acta 1842, 1372-1378. https://doi.org/10.1016/j.bbadis.2014.04.027
  2. Assali, A.R., Ganor, A., Beigel, Y., Shafer, Z., Hershcovici, T., and Fainaru, M. (2001). Insulin resistance in obesity: body-weight or energy balance? J. Endocrinol. 171, 293-298. https://doi.org/10.1677/joe.0.1710293
  3. Banks, A.S., Kon, N., Knight, C., Matsumoto, M., Gutierrez-Juarez, R., Rossetti, L., Gu, W., and Accili, D. (2008). SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333-341. https://doi.org/10.1016/j.cmet.2008.08.014
  4. Berndsen, C.E., and Denu, J.M. (2008). Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol. 18, 682-689. https://doi.org/10.1016/j.sbi.2008.11.004
  5. Berwick, D.C., Hers, I., Heesom, K.J., Moule, S.K., and Tavare, J.M. (2002). The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 277, 33895-33900. https://doi.org/10.1074/jbc.M204681200
  6. Chae, H.D., and Broxmeyer, H.E. (2011). SIRT1 Deficiency Downregulates PTEN/JNK/FOXO1 Pathway to Block Reactive Oxygen Species-Induced Apoptosis in Mouse Embryonic Stem Cells. Stem Cells and Development 20, 1277-1285. https://doi.org/10.1089/scd.2010.0465
  7. Chen, J., Chan, A.W.H., To, K.F., Chen, W., Zhang, Z., Ren, J., Song, C., Cheung, Y.-S., Lai, P.B.S., Cheng, S.-H., et al. (2013). SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-$3{\beta}/{\beta}$-catenin signaling. Hepatology 57, 2287-2298. https://doi.org/10.1002/hep.26278
  8. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840. https://doi.org/10.1126/science.1175371
  9. Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E., and Mann, M. (2014). The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536-550.
  10. Cohen, P. (2006). The twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867-873. https://doi.org/10.1038/nrm2043
  11. DeFronzo, R.A., and Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 Suppl 2, S157-63. https://doi.org/10.2337/dc09-S302
  12. Elshourbagy, N.A., Near, J.C., Kmetz, P.J., Wells, T.N., Groot, P.H., Saxty, B.A., Hughes, S.A., Franklin, M., and Gloger, I.S. (1992). Cloning and expression of a human ATP-citrate lyase cDNA. Eur. J. Biochem. 204, 491-499. https://doi.org/10.1111/j.1432-1033.1992.tb16659.x
  13. Glidden, E.J., Gray, L.G., Vemuru, S., Li, D., Harris, T.E., and Mayo, M.W. (2012). Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 287, 581-588. https://doi.org/10.1074/jbc.M111.304337
  14. Gumbs, A.A., Modlin, I.M., and Ballantyne, G.H. (2005). Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes. Surg. 15, 462-473. https://doi.org/10.1381/0960892053723367
  15. Kaiser, C., and James, S.R. (2004). Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol. 2, 23. https://doi.org/10.1186/1741-7007-2-23
  16. Kelley, D.E., Wing, R., Buonocore, C., Sturis, J., Polonsky, K., and Fitzsimmons, M. (1993). Relative effects of calorie restriction and weight loss in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 77, 1287-1293.
  17. Kim, G.W., and Yang, X.J. (2011). Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem. Sci. 36, 211-220. https://doi.org/10.1016/j.tibs.2010.10.001
  18. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y.B., Sharpe, A.H., et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479-5489. https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  19. Koltai, E., Szabo, Z., Atalay, M., Boldogh, I., Naito, H., Goto, S., Nyakas, C., and Radak, Z. (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech. Ageing Dev. 131, 21-28. https://doi.org/10.1016/j.mad.2009.11.002
  20. Leto, D., and Saltiel, A.R. (2012). Regulation of glucose transport by insulin: traffic control of GLUT4. Nat. Rev. Mol. Cell Biol. 13, 383-396. https://doi.org/10.1038/nrm3351
  21. Lin, R., Tao, R., Gao, X., Li, T., Zhou, X., Guan, K.L., Xiong, Y., and Lei, Q.-Y. (2013). Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51, 506-518. https://doi.org/10.1016/j.molcel.2013.07.002
  22. Lundby, A., Lage, K., Weinert, B.T., Bekker-Jensen, D.B., Secher, A., Skovgaard, T., Kelstrup, C.D., Dmytriyev, A., Choudhary, C., Lundby, C., et al. (2012). Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns. Cell Rep. 2, 419-431. https://doi.org/10.1016/j.celrep.2012.07.006
  23. Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., et al. (2008). ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554. https://doi.org/10.1158/0008-5472.CAN-08-1235
  24. Monteserin-Garcia, J., Al-Massadi, O., Seoane, L.M., Alvarez, C.V., Shan, B., Stalla, J., Paez-Pereda, M., Casanueva, F.F., Stalla, G.K., and Theodoropoulou, M. (2013). Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J. 27, 1561-1571. https://doi.org/10.1096/fj.12-220129
  25. Okumura, K., Mendoza, M., Bachoo, R.M., DePinho, R.A., Cavenee, W.K., and Furnari, F.B. (2006). PCAF modulates PTEN activity. J. Biol. Chem. 281, 26562-26568. https://doi.org/10.1074/jbc.M605391200
  26. Philip, A., Rowland, T., Perez-Shindler, J., and Schenk, S. (2014). Understanding the acetylome: Translating targeted proteomics into meaningful physiology. American Journal of Physiology, Cell Physiology.
  27. Pierce, M.W., Palmer, J.L., Keutmann, H.T., Hall, T.A., and Avruch, J. (1982). The insulin-directed phosphorylation site on ATP-citrate lyase is identical with the site phosphorylated by the cAMP-dependent protein kinase in vitro. J. Biol. Chem. 257, 10681-10686.
  28. Pirola, L., Zerzaihi, O., Vidal, H., and Solari, F. (2012). Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling. Mol. Cell. Endocrinol. 362, 1-10. https://doi.org/10.1016/j.mce.2012.05.011
  29. Ramakrishnan, G., Davaakhuu, G., Kaplun, L., Chung, W.C., Rana, A., Atfi, A., Miele, L., and Tzivion, G. (2014). Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J. Biol. Chem. 289, 6054-6066. https://doi.org/10.1074/jbc.M113.537266
  30. Salmeen, A., Andersen, J.N., Myers, M.P., Tonks, N.K., and Barford, D. (2000). Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell 6, 1401-1412. https://doi.org/10.1016/S1097-2765(00)00137-4
  31. Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. https://doi.org/10.1126/science.1106148
  32. Schenk, S., McCurdy, C.E., Philp, A., Chen, M.Z., Holliday, M.J., Bandyopadhyay, G.K., Osborn, O., Baar, K., and Olefsky, J.M. (2011). Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281-4288. https://doi.org/10.1172/JCI58554
  33. Shimobayashi, M., and Hall, M.N. (2014). Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15, 155-162. https://doi.org/10.1038/nrm3757
  34. Stockli, J., Fazakerley, D.J., and James, D.E. (2011). GLUT4 exocytosis. J. Cell Sci. 124, 4147-4159. https://doi.org/10.1242/jcs.097063
  35. Sun, C., and Zhou, J. (2008). Trichostatin A improves insulin stimulated glucose utilization and insulin signaling transduction through the repression of HDAC2. Biochem. Pharmacol. 76, 120-127. https://doi.org/10.1016/j.bcp.2008.04.004
  36. Sundaresan, N.R., Pillai, V.B., Wolfgeher, D., Samant, S., Vasudevan, P., Parekh, V., Raghuraman, H., Cunningham, J.M., Gupta, M., and Gupta, M.P. (2011). The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 4, ra46.
  37. Tamguney, T., and Stokoe, D. (2007). New insights into PTEN. J. Cell Sci. 120, 4071-4079. https://doi.org/10.1242/jcs.015230
  38. Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85-96.
  39. Verdin, E., and Ott, M. (2014). 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol.
  40. Wang, J., Obici, S., Morgan, K., Barzilai, N., Feng, Z., and Rossetti, L. (2001). Overfeeding rapidly induces leptin and insulin resistance. Diabetes 50, 2786-2791. https://doi.org/10.2337/diabetes.50.12.2786
  41. Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y., et al. (2010). Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004-1007. https://doi.org/10.1126/science.1179687
  42. White, A.T., McCurdy, C.E., Philp, A., Hamilton, D.L., Johnson, C.D., and Schenk, S. (2013). Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia 56, 1629-1637. https://doi.org/10.1007/s00125-013-2912-2
  43. White, A.T., Philp, A., Fridolfsson, H.N., Schilling, J.M., Murphy, A.N., Hamilton, D.L., McCurdy, C.E., Patel, H.H., and Schenk, S. (2014). High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am. J. Physiol. Endocrinol. Metab. 307, E764-72. https://doi.org/10.1152/ajpendo.00001.2014
  44. Zhang, J. (2007). The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282, 34356-34364. https://doi.org/10.1074/jbc.M706644200
  45. Zhang, T., Wang, S., Lin, Y., Xu, W., Ye, D., Xiong, Y., Zhao, S., and Guan, K.-L. (2012). Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab. 15, 75-87. https://doi.org/10.1016/j.cmet.2011.12.005
  46. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-1004. https://doi.org/10.1126/science.1179689

Cited by

  1. Hallmarks of therapeutic management of the cystic fibrosis functional landscape vol.14, pp.6, 2015, https://doi.org/10.1016/j.jcf.2015.09.006
  2. Effects of dietary high fructose corn syrup on regulation of energy intake and leptin gene expression in rats vol.28, pp.6, 2015, https://doi.org/10.1590/1415-52732015000600003
  3. Acute stimulation of glucose influx upon mitoenergetic dysfunction requires LKB1, AMPK, Sirt2 and mTOR–RAPTOR vol.129, pp.23, 2016, https://doi.org/10.1242/jcs.194480
  4. Metabolites as regulators of insulin sensitivity and metabolism vol.19, pp.10, 2018, https://doi.org/10.1038/s41580-018-0044-8
  5. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice vol.13, pp.12, 2018, https://doi.org/10.1371/journal.pone.0208634
  6. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity vol.316, pp.6, 2019, https://doi.org/10.1152/ajpendo.00497.2018
  7. Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells vol.13, pp.3, 2015, https://doi.org/10.4162/nrp.2019.13.3.196
  8. Acute inhibition of protein deacetylases does not impact skeletal muscle insulin action vol.317, pp.5, 2015, https://doi.org/10.1152/ajpcell.00159.2019