• Title/Summary/Keyword: red tides

Search Result 110, Processing Time 0.02 seconds

Survival and growth of the red tide organism Cochlodinium polykrikoides after the addition of yellow loess

  • Lee, Young-Sik;Lim, Wol-Ae;Lee, Sam-Geun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.282-285
    • /
    • 2008
  • At least 15% of the C polykrikoides cells that precipitated to the bottom layer either by the addition of loess or no addition survived for 1 week at all growth phases, rather than disappearing immediately after precipitating. However, no live cells were observed after 20 days, regardless of phase or loess addition. In the exponential phase, the number of C polykrikoides cells increased to >2886 cells/ml after loess was added. However, in the stationary phase, the number of cells did not increase until 18 days. In the exponential phase, those C polykrikoides that survived precipitation caused by scattering loess on cultures did not appear to have the ability to cause red tides again because of the short red tide periods in the field, long lag time after loess addition, and low survival rate after loess addition.

  • PDF

Histological Effect of Sodium Hypochlorite (NaOCl), Exposed at Red Tide-killing Concentrations, in Rockfish and Little Neck Clam (적조생물구제농도의 Sodium Hypochlorite(NaOCl)의 노출에 따른 조피볼락 및 바지락의 조직학적 영향)

  • 한조희;김영석;허민도;정해진;박관하
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • In a previous study by Kim et al. (2000), sodium hypochlorite (NaOCl) has been demonstrated to be effective against algae that cause red tides. To secure the environmental safely of the chemical in practical use, effect of NaOCl, at concentrations required for algicidal activity, on the histology of rockfish and little neck clam was examined. When the animals were exposed to NaOCl at concentrations of 0.5 or 2ppm for 1 hr, there was no exposure-associated histological change in either animal. As the experimental exposure condition was set in consideration of the use, our results provide safety information necessary for practical application to marine fields.

  • PDF

Effects of Loess Application in Coastal Benthic Ecosystem (적조 방제용 황토살포가 연안 저서생태계에 미치는 영향)

  • Park, Chi-Hyun;Lee, Byoung-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1035-1043
    • /
    • 2006
  • Large scale of fish kills by red tides has been occurred every year in coastal water fisheries of Korea. To suppress red tide spreading out over the south coastal water of the Korean Peninsula large amount of loess has been applied every year because loess is known to be effective in removing red tide organisms. Effects of loess application in ecosystem of underwater near sea shore were investigated with some physical characteristics of loess. Loess used for the red tide reduction consisted of very fine particles, of which size was mostly less than 0.1 mm. Particles of loess blocked light penetration, which is essential for the underwater ecosystem. Loess also pushed pH down by the hydrolysis activities of aluminium and iron It was found that underwater ecosystems where loess was applied near sea shore were devastated. Sea plants such as sea weeds were gone leaving only their roots. Clams and snails were dead under the loess dust blanket. And fishes were not found at all where loess has been sprayed lot long time. It was found that even if loess has some capacity to reduce red tide temporarily, loess application should be slopped to protect underwater ecosystems.

The Effects of Ammonium Ion and Salts on the Killing of Red Tides Organism; Cochlodinium polykrikoides and Gymnodinium sanguieum (적조생물, Cochlodinium polykrikoides와 Gymnodinium sanguieum의 사멸에 있어 암모니아염의 효과)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.578-583
    • /
    • 2005
  • Cell-free culture broth of marine halophilic bacterium, Kordia algicida was shown to possess specific algicidal ability against red tide organism, Cochlodinium polykrikides. Physiochemical characteristics of algicidal material originated in the bacterial culture broth were analyzed that its molecular weight was estimated to a 3,000 dalton and it was stable in heat and pH treatment. The algicidal fraction against C. polykrikoides obtained from gel permeable chromatography contained high concentration of ammonium ion as analyzed by ICP/Mass spectrum. C. polykrikoides by the fraction was quickly lysed within 1 min. It was shown that the effective concentration for algicide against C. polykrikoides was over 1mM of ammonium chloride. On the other hand, other metal ions presented in the algicidal fraction showed no algicidal effect against C. polykrikoides. In additon, ammonium ion exhibited species-specific killing spectrum for two species of red tide organisms, C. polykrikoides and Gymnodinium sanguieum. Therefore, further researches on the killing mechanism against C. polykrikoides exerted by ammonium ion, and subsequent development of replaceable algicidal materials will perform to provide useful tools for the control of red tide.

Molecular Phylogeny of Phytoplakton Isolated from Red Tides in Southern Coast of Korea (국내 남해안에 발생한 적조원인생물들의 24S rRNA 유전자 염기서열분석)

  • Lee, Soo-Woong;Lee, Hee-Woo;Park, Jong-Gyu;Lee, Jin-Ae;Park, Young-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.90-93
    • /
    • 1998
  • Cultured isolates of Prorocentrum minimum, P. micans, P. triestinum, P. balticum, Gymnodinium sanguineum, Alexandrium catenella, Scrippsiella trochoidea, and Heterosigma akashiwo from red tides in southern coast of Korea were phylogenetically compared on the basis of their 24S rRNA genes. For each isolate approximately 700 bp of 24S rDNA, encompassing D1 and D2 hypervariable domains, was amplified using the polymerase chain reaction and sequenced. The sequences were aligned with those reported in Genbank by using ClustalW program and phylogenetic tree was generated to show that morphospecies designations in the Alexandrium and Prorocentrum species are congruent with terminal taxa defined by phylogenetic analysis of the 24S rRNA fragment. Our results suggest that the molecular phylogeny approach could facilitate identification of domestic dinoflagellates which have ambiguous morphologies.

  • PDF

Reevaluation of the Generation of Reactive Oxygen Species (ROS) by Cochlodinium polykrikoides as a Fish Killing Factor; Comparison with Chattonellla marina

  • Kim, Dae-Kyung;Oda, Tatsuya;Muramatsu, Tsuyoshi;Honjo, Tsuneo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.206-207
    • /
    • 2001
  • Cochlodinium polykrikoides is one of the most harmful red tide dinoflagellates and is highly toxic to fish. Red tides due to this dinoflagellate have been reported in Korea, Japan, and other countries, and frequently cause severe damage to fish farming. Recently study has suggested that C. polykrikoides generates reactive oxygen species (ROS) such as superoxide anion ($O_{2-}$) and hydrogen peroxide ($H_2O_2$), and the ROS-mediated ichthyotoxicity has been proposed. (omitted)

  • PDF

Satellite-detected red tide algal blooms in Korean and neighboring waters during 1999-2004

  • Ahn Yu-Hwan;Shanmugam Palanisamy
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.95-100
    • /
    • 2006
  • Measurements of ocean color from space since 1970s provided vital information with reference to physical and biogeochemical properties of the oceanic waters. The utility of these data has been explored in order to map and monitor highly toxic/or harmful algal blooms (HABs) that affected most of coastal waters throughout the world due to accelerated eutrophication from human activities and certain oceanic processes. However, the global atmospheric correction and bio-optical algorithms developed for oceanic waters were found to yield false information about the HABs in coastal waters. The present study aimed to evaluate the potential use of red tide index (RI) method, which has been developed by Ahn and Shanmugam (2005), for mapping of HABs in Korean and neighboring waters. Here we employed the SSMM to remove the atmospheric effect in the SeaWiFS image data and the achieved indices by RI method were found more appropriate in correctly identifying potential areas of the encountered HABs in Korean South Sea (KSS) and Chinese coastal waters during 1999-2004. But the existence of high absorbing and scattering materials greatly interfered with the standard OC4 algorithm which falsely identified red tides in these waters. In comparison with other methods, the RI approach for the early detection of HABs can provide state managers with accurate identification of the extent and location of these blooms as a management tool.

  • PDF

A Study on the Choice of Proper Region for Moving Cage Culture Facilities (이동식 가두리 양식장의 이동적지 선정에 관한 연구)

  • 조규대;박성은;고우진
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 1999
  • A Study on the choice of proper region for moving cage culture facilities were carried out in the South Sea of Korea. Optimum temperatures of habitats for cage culture fishes, Sebastes schlegeli, Paralichthys olivaceus, Seriola quinqueradiata, Lateolabrax japonicus, Pagrus major, Takifugu vermicularis, and Mugil cephalus were 18~26$^{\circ}C$, 10~$25^{\circ}C$, 15~29$^{\circ}C$, 15~29$^{\circ}C$, 15~3$0^{\circ}C$, 15~$25^{\circ}C$, and 19~27$^{\circ}C$, respectively. In winter, wintering regions for continuous growth of fishes were proper around Komundo, Sorido, Soimal, Gadukdo and Chejudo for Paralichthys olivaceus and Lateolabrax japonicus, while Seoguipo and Udo for Seriola quinqueradiata, Pagrus major and Takifugu vermicularis. Sanji was not proper for wintering region because variation of water temperature is large by effect of strong northwestern wind. Wintering regions of Sebastes schlegeli and Mugil cephalus were not in the south of Korea. In summer, proper regions for fishes to avoid from damage by red tide were Komundo and around Chejudo. No red tide has occurred in these regions for 6 years. Mokpo and Yoja Bay were not proper for moving region because the former had strong tides and the latter had only one exit out of the bay which made it impossible to move cages in other route when dangerous red tides burst into.

  • PDF

Red to Red - the Marine Bacterium Hahella chejuensis and its Product Prodigiosin for Mitigation of Harmful Algal Blooms

  • Kim, Doc-Kyu;Kim, Ji-Hyun F.;Yim, Joung-Han;Kwon, Soon-Kyeong;Lee, Choong-Hwan;Lee, Hong-Kum
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1621-1629
    • /
    • 2008
  • Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the $\gamma$-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations ($\sim$l ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.

Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists

  • Kim, So Jin;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Sung Yeon;Park, Tae Gyu
    • ALGAE
    • /
    • v.32 no.4
    • /
    • pp.309-324
    • /
    • 2017
  • Recently, the heterotrophic nanoflagellate Katablepharis japonica has been reported to feed on diverse red-tide species and contribute to the decline of red tides. However, if there are effective predators feeding on K. japonica, its effect on red tide dynamics may be reduced. To investigate potential effective protist predators of K. japonica, feeding by the engulfment-feeding heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, the peduncle-feeding HTDs Luciella masanensis and Pfiesteria piscicida, the pallium-feeding HTD Oblea rotunda, and the naked ciliates Strombidium sp. (approximately $20{\mu}m$ in cell length), Pelagostrobilidium sp., and Miamiensis sp. on K. japonica was explored. We found that none of these heterotrophic protists fed on actively swimming cells of K. japonica. However, O. marina, G. dominans, L. masanensis, and P. piscicida were able to feed on heat-killed K. japonica. Thus, actively swimming behavior of K. japonica may affect feeding by these heterotrophic protists on K. japonica. To the contrary, K. japonica was able to feed on O. marina, P. kofoidii, O. rotunda, Miamiensis sp., Pelagostrobilidium sp., and Strombidium sp. However, the specific growth rates of O. marina did not differ significantly among nine different K. japonica concentrations. Thus, K. japonica may not affect growth of O. marina. Our findings suggest that the effect of predation by heterotrophic protists on K. japonica might be negligible, and thus, the effect of grazing by K. japonica on populations of red-tide species may not be reduced by mortality due to predation by protists.