• Title/Summary/Keyword: red fluorescent material

Search Result 37, Processing Time 0.026 seconds

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

A novel red light-emitting material and the characteristics of OLEDs using the same as red dopant

  • Lim, Seung-Han;Park, Jung-Hyun;Seo, Ji-Hoon;Ryu, Gweon-Young;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1573-1576
    • /
    • 2007
  • ABCV-Py, a new red fluorescent material, in which two identical electron donor (dimethylamino group) and acceptor (cyano group) moieties are linked to two independent biphenyl groups which share the same core phenyl, has been synthesized for use in OLED application. Performance of red doped electroluminescent devices using ABCV-Py as dopant were measured with various host materials, $Alq_3$, CBP, DPVBi, and p-terphenyl. The performance of device with DPVBi host material was better than those with other host materials and high doping concentration could be applied on device with ABCV-Py as dopant.

  • PDF

Synthesis and fluorescent property investigation of novel fluoroionophores

  • Huang, Zhi Bin;Wang, Zhi Ping;Kang, Tai-Jong;Kwon, Young-Hwan;Kim, Sung-Nam;Chang, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.428-429
    • /
    • 2005
  • Novel fluoroionophore of dibenzothiazolyl-dibenzo-crown ethers were synthesized from diformal-dibenzo 18-crown-6 (24-crown-8) with 2-aminothiophenol, and they were characterizated by $^1H$-NMR, $^{13}C$-NMR, IR spectrum, Mass spectrum, elemental analyses, respectively. The fluorescent properties of the newly synthesized crown ether were examined with $Li^+$, $Na^+$, $K^+$, $Rb^+$, $Cs^+$, $NH_4^+$ and $CF_3COOH$, respectively. With protonation using $CF_3COOH$, the absorption bands of the new crown ethers are further blue shifted, the maximum emission wavelengths further red shifted.

  • PDF

Emission Characteristics of White Organic Light-Emitting Diodes Using Blue Fluorescent and Red Phosphorescent Materials (청색 형광과 적색 인광 물질을 사용한 백색 OLED의 발광 특성)

  • Park, Chan-Suk;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.704-710
    • /
    • 2015
  • We studied white organic light-emitting diodes using blue fluorescent and red phosphorescent materials. White single OLEDs were fabricated using SH-1 : BD-2 (3 vol.%) and CBP : $Ir(mphmq)_2(acac)$ (2 vol.%) as emitting layer (EML). The white single OLED using SH-1 : BD-2 (3 vol.% 8 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 22 nm) as emitting layer showed maximum current efficiency of 8.8 cd/A, Commission Internationale de l'Eclairage (CIE) coordinates of (0.403, 0.351) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.402{\pm}0.012$, $0.35{\pm}0.002$) from 500 to $3,000cd/m^2$. The white tandem OLED using SH-1 : BD-2 (3 vol.% 12 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 18 nm) showed maximum efficiency of 19.6 cd/A, CIE coordinates of (0.354, 0.365) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.356{\pm}0.016$, $0.364{\pm}0.002$) from 500 to $3,000cd/m^2$. Maximum current efficiency of the white tandem OLED was more twice as high as the single OLED. Our findings suggest that tandem OLED was possible to produce improved efficiency and excellent color stability.

Response of Growth and Functional Components in Baby Vegetable as Affected by LEDs Source and Luminous Intensity (LEDs 광조성 및 광도가 베이비채소의 생육 및 기능성물질에 미치는 영향)

  • Yoon, Seong-Tak;Jeong, In-Ho;Kim, Young-Jung;Han, Tae-Kyu;Yu, Je-Bin;Jae, Eun-Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.549-565
    • /
    • 2015
  • This study was conducted to investigate the growth characteristics and functional materials of baby vegetables as affected by different LEDs and luminous intensity at Anseongsi, Gyeonggi Province, in 2014. Test crops were beet, chicory, spinach, red leaf lettuce, crown daisy and red mustard purchased from the seed company of Dongbu Hannong and Jinheung. Growth characteristics were measured and the content of functional materials was analyzed 40 days after seeding at plug plate. Treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity showed the highest number of leaves in five baby vegetables of beet, chicory, red leaf lettuce, crown daisy and red mustard. The highest shoot length of chicory, spinach, red leaf lettuce, crown daisy and red mustard was obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Fresh weight and dry weight of all six baby vegetables were the highest in treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Content of chlorophyll a and chlorophyll b of spinach, red leaf lettuce and red mustard showed the highest in Fluorescent lamp at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity whereas other crops did not show definite trend under different LEDs lights and luminous intensity. The highest total content of anthocyanins and polyphenol were obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity in all six baby vegetables. Free radical scavenging activity was highest in all six vegetable crops at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity, but it was not different significantly between LEDs. As a result, the growth and the content of functional material of baby vegetables are generally to be increased in Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Mixed light of Red+Blue is thought to give good effect on the growth and the content of functional material in baby vegetable crops. Because there are many differences in regard of LED lights, crop varieties, cultivation and experimental methods in their impact on the growth and functional materials of baby vegetables among researchers, it is considered that a more precise studies are needed for the crop responses to LED light and luminous intensity.

Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology

  • Jeon, Woo-Sik;Park, Tae-Jin;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.87-91
    • /
    • 2009
  • Highly efficient red phosphorescent OLEDs (PHOLEDs) with a simple, organic, triple-layer structure was developed using the narrow-bandgap fluorescent host material bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2) and the deep-red dopant tris(1-phenylisoquinoline)iridium (Ir(piq)3). The maximum current and power efficiency values of 12.71 cd/A and 16.02 lm/W, respectively, with an extremely low doping technology of 1%, are demonstrated herein. The results reveal a practical, cost-saving host dopant system for the fabrication of highly efficient PHOLEDs involving the simple structure presented herein, with a reduction of expensive Ir dopants.

Red Organic Light-emitting Diodes utilizing Energy Transfer and Charge Trapping

  • Kim, Ju-Seung;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.91-96
    • /
    • 2005
  • We report the efficient red light-emitting diodes based on the fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) and 5,6,11,12-tetraphenyl naphthacene (rubrene) codoped in the tris(8-hydroxyquinoline)aluminum $(Alq_3)$. Luminance efficiency of 2.2 cd/A with a Commission International De L'Eclairage (CIE) chromaticity coordinate of x, y = (0.640, 0:350) are achieved at the driving current density of $20\;mA/cm^2$. Adding the rubrene to the DCJTI in tris(8-hydroxyquinoline)aluminum $(Alq_3)$, the red color purity and luminance efficiency improved comparing to the DCJTI only doped devices because the rubrene molecules assist the polarization effect of DCJTI by molecular interaction and enhance the energy transfer from $(Alq_3)$ to DCJTI.

Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes (다중 피리딘 구조를 가지는 형광염료의 금속 이온 반응성에 대한 연구)

  • Zo, Hye Jin;Kim, Arong;Jeong, Sooyeon;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.254-261
    • /
    • 2013
  • In this study, we synthesized a new fluorescent polypyridyl dye 2 containing a 2,2'-bipyridine in the center and two 2,2':6',2"-terpyridines at both ends. When exposed to various metal ions, the dye 2 showed selective fluorescence responses. In the presence of $Cu^{2+}$ and $Ni^{2+}$, it exhibited a highly effective fluorescence quenching, leading to large $K_{sv}$ values of up to $10^5$. In response to most other metal ions including $Al^{3+}$, in contrast, its fluorescence changes little, showing a small Ksv value at $10^2$. Meanwhile, the compound 2 revealed a differentiated fluorescence response to $Zn^{2+}$, which is evidenced by a large red shift of > 100 nm. Such a red shift from the ion binding is attributed to the planarization of the bipyridyl unit extending the effective conjugation length in conjunction. A polypyridyl compound will find important usefulness in chemosensor application due to its selective binding to metal ions. Subsequent research concerned with modified derivatives is currently going on, as a way to provide high solubility even after metal-complexing.

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF