• Title/Summary/Keyword: red LED

Search Result 635, Processing Time 0.029 seconds

Conjugated Copolymers by Horner-Emmons Polycondensation and Electroluminescence Characteristics

  • Park, Lee-Soon;Jeong, Seung-Won;Kim, Sang-Dae;Seo, Hyeon-Jin
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Four types of conjugated polymers, poly(MEHPV-PV), poly(MEHPV-BPV), poly(MEHPV-AV) and poly(PZV-AV) were synthesized by Homer-Emmons reaction using potassium tert-butoxide. The Homer-Emmons reaction gave electroluminescent(EL) copolymers in good yield. Of the EL copolymers synthesized, poly(PZV-AV) containing phenothiazinylene vinylene and anthrylene vinylene as repeat unit exhibited red color in the light emitting diode(LED) which was very close to the NTSC standard red. Besides, double layer LED made with $Alq_3$ electron transport layer exhibited both enhanced emission intensity and efficiency compared to the single layer LED.

  • PDF

Color Tuning of a Mn4+ Doped Phosphor : Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00) (Mn4+ 도핑된 형광체, Sr1-xBaxGe4O9:MnMn4+0.005 (0.00 ≤ x ≤ 1.00)의 Color Tuning)

  • Park, Woon Bae
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.163-167
    • /
    • 2017
  • Along with the progress of white LED technology, red phosphors have become increasingly important in industry and academia, and a more specific demand has steadily increased in the market. Red phosphors are used in high efficiency and high rendering LED lightings. However, using red phosphors with $Eu^{2+}$ activators caused color rewarming and reduced emission intensity in white LED chips due to strong reabsorption in the green or yellow wavelength range caused by the 4f-5d transition. $Mn^{4+}$ doped phosphors which have no such drawbacks and which can further improve the color rendering index (CRI) are now of great interest. However, $Mn^{4+}$-doped phosphors have a disadvantage in that the emission wavelength is determined depending on the host due to the $^2E_g{\rightarrow}^4A_2$ transition. In this study, the $SrO-BaO-GeO_2$ solid-solution was selected, and $Sr_{1-x}B_axGe_4O_9:Mn^{4+}{_{0.005}}$ ($0{\leq}x{\leq}1$) phosphors were synthesized and characterized. This led to a versatile color tuning in LED technology.

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

The Analysis of Fatigueness and Preference for Three Appearance Attributes of LED Light Color (LED 광색의 삼속성에 따른 피로도와 선호도 분석)

  • Baek, Chang-Hwan;Kim, Youn-Jin;Kim, Hong-Suk;Park, Seung-Ok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.18-29
    • /
    • 2011
  • Light emitting diode(LED) technology has been increasingly developed and larger color gamut by LED illuminations can be reproduced; therefore more efficient LED lighting design can be accomplished under a consideration of color emotion. Fifty-two LED colors which are uniformly distributed on the uniform chromaticity space are evaluated in terms of fatigueness and preference and their relation to three color-appearance attributes(lightness, chroma and hue) are investigated. As a result, 23 human observers likely to prefer and feel comfortable, when lightness of a given LED color stimulus increases as well as its chroma decreases. The highest fatigueness score is observed in red color series and the most preferred LED color is found in green color series. In addition, fatigueness and preference show a strong negative linear relation and their Pearson correlation is higher than -0.8.

Effect of LEDs (Light Emitting Diodes) Irradiation on Growth and Mineral Absorption of Lettuce (Lactuca sativa L. 'Lollo Rosa') (LED 광원이 상추의 생육 및 무기물 흡수에 미치는 영향)

  • Shin, Yong Seub;Lee, Mun Jung;Lee, Eun Sook;Ahn, Joon Hyung;Lim, Jae Ha;Kim, Ha Joong;Park, Hoo Won;Um, Young Ghul;Park, So Deuk;Chai, Jang Heui
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2012
  • The objective of this study was carried out to elucidate the effect of LEDs (light emitting diodes) irradiation in relation to early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Rollo Rosa'). In morphological changes of leaves, shoot elongation and hypocotyl length showed poor growth in red light irradiation, while the red + blue light irradiation induced shorter plant height and much greater leaf numbers resulting in increased fresh weight. In change of the Hunter's color and SPAD values, lettuce seedlings grown under in red + blue and fluorescent light irradiation had a higher $a^*$ value, otherwise SPAD values were not changed in these light irradiations. Interestingly, relative chlorophyll contents showed 1.8 times increased redness in the treatment of red + blue light irradiation. Inorganic element (N, Ca, Mg, Mn, and Fe) and ascorbic acid contents were increased in lettuce plants grown under LEDs light irradiation compared to those of lettuce grown under the fluorescent light which showed higher P and Mn contents. In conclusion, it is considered that red + blue light irradiation which stimulates growth and higher nutrient uptake in leaf lettuce could be employed in containers equipped with LEDs.

Effect of Light Emitting Diodes Treatment on Growth and Quality of Lettuce (Lactuca sativa L. 'Oak Leaf') (LED 처리가 상추의 생육 및 품질에 미치는 영향)

  • Shin, Yong-Seub;Lee, Mun-Jung;Lee, Eun-Sook;Ahn, Joon-Hyung;Kim, Min-Ki;Lee, Ji-Eun;Do, Han-Woo;Cheung, Joung-Do;Park, Jong-Uk;Um, Young-Ghul;Park, So-Deuk;Chae, Jang-Heui
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • The objective of this study was to elucidate the effect of light-emitting diode treatment on early growth and inorganic elements in leaf lettuce (Lactuca sativa L. 'Oak Leaf'). In changes to leaf morphology, shoot elongation and hypocotyl length showed poor growth under red light irradiation, while red+blue light irradiation induced shorter plant height and more leaves, resulting in increased fresh weight. With respect to Hunter's color and SPAD values, lettuce seedlings grown under red+ blue and fluorescent light irradiation had a higher $a^*$ value but showed no other changes to SPAD values. Interestingly, redness in relative chlorophyll content was 1.4 times higher under red+blue light irradiation. Inorganic element (N, Ca, Mg, and Fe) and ascorbic acid concentrations increased in lettuce plants grown under LED light irradiation compared to those of lettuce grown under fluorescent light, which showed a higher P content. In conclusion, red+blue light irradiation, which stimulates growth and higher nutrient uptake in leaf lettuce, could be employed in containers equipped with LEDs.

Effect of LED Light Quality and Supplemental Time on the Growth and Flowering of Impatiens (LED 광질과 보광시간이 임파첸스의 생육과 개화에 미치는 영향)

  • Kim, So Hee;Heo, You;Rhee, Han Cheol;Kang, Jum Soon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2013
  • This study was conducted to examine the effect of LED light quality and treatment time on the growth and flowering in potted plants of Impatiens (Impatiens hawkerihybrid). Plant height of Impatiens was enhanced under Blue light, regardless of treatment time. Root length and stem diameter of Impatiens were enhanced by Red light or Blue light. The number of internodes was not influenced by LED light quality. The number of branches of Impatiens was increased under Blue light, but treatment time did not result in statistically significant differences. Leaf area was increased by all LED lights in Impatiens. The number of flower buds and open flowers was decreased by LED light, but days to flowering were reduced by Red light in Impatiens. Chlorophyll and anthocyanin content were not significantly affected by LED light, but anthocyanin content tended to increase by Blue light for 4 h after sunset. Fresh and dry weights were enhanced by Blue light in Impatiens.

Improved light extraction efficiency of vertical AlGaInP-based LEDs by n-AlGaInP surface roughening (n-표면 거칠기가 형성된 AlGaInP 수직형 적색 발광다이오드의 광추출효율 증가)

  • Seo, Jae-Won;Oh, Hwa-Sub;Song, Hyun-Don;Park, Kyung-Wook;Ryu, Seong-Wook;Park, Yung-Ho;Park, Hae-Sung;Kwak, Joon-Seop
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • In order to increase extraction efficiency of AlGaInP-based vertical RED LEDs, chemical wet etching technique was produced by using a roughened surface with triangle-like morphology. A commonly used $H_3PO_4$-based solution was applied for chemical wet etching. The light extraction of AlGaInP LED was related to the n-side roughed surface morphology. The morphology of roughed surface is analyzed by the atomic force microscope (AFM). As a result, the roughed surface AlGaInP LED has a root-mean-square (RMS) roughness of 44 nm. The brightness shows 41% increase after roughening n-side surface, as compared to the ordinary flat surface LED.

Effect of different light sources and ventilation on in vitro shoot growth and rooting of a rare and endangered species, Tsuru-rindo(Tripterospermum japonicum) (희귀 및 멸종위기 식물 덩굴용담의 기내생장에 미치는 광질 및 환기효과)

  • Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.