• Title/Summary/Keyword: recycling of waste materials

Search Result 672, Processing Time 0.024 seconds

Preparation and Characterization of the Hydrolyzed Protein from Shaving Scraps of Leather Waste Containing Chromium (피혁폐기물(皮革廢棄物)인 Shaving scraps으로 부터 가수분해(加水分解) 단백질(蛋白質)의 제조(製造) 및 특성(特性))

  • Kim, Won-Ju;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.47-56
    • /
    • 1997
  • To examine of possibility protein recycling of shaving scraps contained chrome generated from manufacturing process of leather, the characteristics of hydrolyzed protein that differently treated with MgO as alkaline agent were investigated. In alkaline hydrolysis of saving scraps treated with MgO, MgO had to be treated over 5.0% to maintain over pH 8.0 that is insoluble of chrome. Under the condition of alkaline treated with MgO, the solubility of chrome is low with about 60%. The average molecular weight of hydrolyzed proteins from shaving scraps treated with MgO was about 80~100 KD. The amino acid contents of that were largely collagen proteins such as glycine, alanine and proline, and acidic amino acids such as aspartic acid and glutatamic acid. The contents of Mg, Ca and Na in hydrolyzed protein were too much as liquid fertilizer, and chrome contents was 30~40 ppm that largely decreased in comparing with raw materials (40,000~42,000 ppm).

  • PDF

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

Study on $CaCO_3$ Preparation from MSWI Fly Ash (생활쓰레기 소각(燒却)비산재로부터 $CaCO_3$ 제조(製造)에 관한 연구(硏究))

  • Choi, Woo-Zin;Park, Eun-Kyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.47-51
    • /
    • 2006
  • The total amount of ash generated from the municipal solid waste incineration(MSWI) in Korea was approximately 420,000 tons in 2005 including 68,000 tons of fly ash. Fly ash from MSWI generally contains high amount of CaO (upto ${\sim}50%$) due to the treatment of flue gas by spraying CaO-base materials. Currently, most of fly ash generated is finally ended up with specially designed landfill sites and only less then 20% of fly ash is recycled. In the present work, preparation of $CaCO_3$ from the MSWI ny ash was studied to promote the fly ash recycling. Fly ash obtained from the dust collector in stoker-type MSWI is used to selectively dissolve CaO by using the sugar solution. Then, $CO_2$ gas was passed through the dissolved solution to pro- duce $CaCO_3$ powder. The optimum conditions for CaO dissolution were solid content 10%, reaction time 15 minutes, sugar concentration $10{\sim}15%\;and\;pH\;10.5{\sim}11.0$. The high grade $CaCO_3$ powder was obtained and the experimental conditions are also discussed.

Recycling and characterization of bone incorporated with concrete for gamma-radiation shielding applications

  • U. Rilwan;G.M. Aliyu;S.F. Olukotun;M.M. Idris;A.A. Mundi;S. Bello;I. Umar;A. El-Taher;K.A. Mahmoud;M.I. sayyed
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2828-2834
    • /
    • 2024
  • This research intends to recycle bone and incorporate it into concrete for radiation shielding application using Phy-X/PSD software. Cement, sand and granite were mixed in proportion of 0.5 kg:1 kg:1 kg to obtain sample A. Other concretes composing of cement, sand, granite and bone ash was in proportion 0.45 kg:1 kg:1 kg:0.05 kg, 0.1 kg:1 kg:1 kg:0.4 kg and 0.35 kg:1 kg:1 kg:0.15 kg to obtain samples B, C and D respectively. 0.5 water-to-cement (W/C) ratio was adopted throughout the mixes because the control mix contain the normal water quantity for normal hydration of cement. Replacing the bone ash for the cement in the fabricated concretes enhances their densities where the fabricated concretes' density decreased from 2.33 g/cm3 to 2.22 g/cm3 by raising the reinforcing bones fly ash concentration from 0 to 0.15 kg. Additionally, increasing the bones fly ash concentration within the fabricated concretes increases their linear attenuation coefficient (LAC) where the fabricated concretes' μ values at 0.662 MeV reach 0.181 cm-1, 0.178 cm-1, 0.174 cm-1, and 0.171 cm-1, respectively for concretes A, B, C, and D. The use of other local materials is recommended, as it improves waste management being the major aim of the sustainable development goal.

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

Development and Physical Properties of a Glass-ceramic from Fly Ash of Power Station (발전소의 석탄재로부터 결정화유리의 제초 및 물리적 특성)

  • 김형순;김재명;김석원;허증수
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.558-565
    • /
    • 2002
  • Coal fly ash, produced from a power plant in Korea was used for the production of glass-ceramics and the physical properties of glass-ceramics were evaluated. CaO and TiO$_2$ were added into the fly ash during the melting process to reduce the viscosity of molten glass and to induce internal crystallization of glass, respectively. Glass-ceramic was produced through a single stage heat treatment (at 950∼1050$\^{C}$ for 37∼240 min) after preparing glass (iota fly ash powder. As a result, a new tiny rod type crystals (a=7.4480, b=10.7381, c=4.3940 A, $\alpha$=94.9, $\beta$=98.6, γ=108.5°) was found in the glass-ceramics, which showed attractive mechanical properties, high hardness (7.1∼7.6 GPa) and wear resistance (by erosion test). Thus a glass-ceramic produced from thermal power plant fly ash and cell as a source for CaO exhibits a suitable treatment for the recycling and exploitation of waste materials and would be acceptable for a new application far building materials.

A Study on the Consciousness Survey for Visitors and Physical Properties of Refuse in Summer Resort - Focused on Beach and Valley in Gangwon province - (피서지 쓰레기의 물리적 특성 및 피서객 의식조사 연구 - 강원도 해수욕장.산간계곡 중심으로 -)

  • Park, Kwang-Ha;Kwak, Dong-Kurl;Kwon, Young-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • In order to making resources for the organic wastes, it is very important to understand for the life cycle of wastes before the physicochemical analysis and engineering technology. Therefore we try to fine the solution through the interdisciplinary consilience between natural science and social science for the management of refuge in summer resort. Summer visitors of beach answered that fly tipping of refuse was 65.56% and insufficient separation was 17.78% about the survey. But insufficient separation was 42.5% and fly tipping was 37.5% in valley. The survey for the effective methods at reducing refuse was represented that campaign and teaching was 47.78%, fine was 23.33% and using the standard bags was 18.89% in beach. Campaign and teaching was 37.5%, using the standard bags was 37.5% and fine was 15% in valley. Bulk density of refuse in gyeongpo beach was measured in $74kg/m^{3}$. This value was three times as much low than municipal solid wastes. Moreover, the composition of refuses in beach showed that combustible materials was 81.1% and incombustible materials was 18.9%. Moisture, ash and combustibles were analyzed 19.0%, 9.2% and 91.8% respectively.

A Study on Na Removal Method in H2WO4(Aq) by Electrodialysis in APT(S) Manufacturing (APT(S) 제조 시 전기투석법을 이용한 H2WO4(Aq)내의 Na 제거 방법에 관한 연구)

  • Kang, Yong-Ho;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.65-72
    • /
    • 2017
  • APT (Ammonium paratungstate) is widely used in various industries such as metal cutting tools, drill bits, mining tools, and military inorganic materials. In order to produce high purity APT(S), an impurity purification step in an aqueous $Na_2WO_4$ convert $H_2WO_4$ solution is required. It is difficult to remove impurity Na of 200 ppm or less when $H_2WO_4(S)$ is prepared by adding HCl(Aq) to an aqueous solution of $Na_2WO_4$, which is a well-known conventional wet method. However, in this study, a more economical and efficient method of removing Na through electrodialysis using a cationic membrane was studied. A large amount of Na in aqueous solution of $H_2WO_4$ due to $Na_2CO_3(S)$ which was added to dissolve waste tungsten carbide drill and scrap was removed to 20ppm or less through electrodialysis process, and it was confirmed that the effect of Na removal was great when using electrodialysis.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.