• Title/Summary/Keyword: recycling & reuse of materials

Search Result 93, Processing Time 0.026 seconds

Study of Pro-environmental Development for Golf Course in Korea (한국 골프장의 친환경적 개발에 관한 연구)

  • 김광두
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.49-78
    • /
    • 1998
  • Nowadays, there are increasing demands of golf courses and it is necessary to make more golf courses than the present. To do this, we need to improve the environmental problems with the regional inhabitants, and it is said that the first thing to be considered in developing any golf course in Korea is to preserve the environment. In this context, the purpose of this study is to set forth several design factors to lessen the negative impacts which are accompanied with the development of golf courses. 1. The present conditions of golf courses in Korea Many new golf courses have come into being, particularly since the late 1980s, and now, in the year of 1997, over one hundred of golf courses are doing their business, yet the number of golf course is still less than required. So far, over a half of them have been made in the vicinity of Seoul on account of various reasons, and this has adversely affected on our natural environment. This unreasonable development of golf courses has caused serious water pollution, landslides and the other problems. Also, the topography of Korea is not good for golf courses. Although the demands of golf courses are increasing, the suitable sites for them are very limited, and therefore it is sometimes unavoidable to make golf courses on steep hills. Consequently, in designing golf courses in Korea, the most important thing is the balance between natural environment and artificial environment. 2.Eco-friendly golf course design factors 1) The concept of eco-friendly golf courses Ecologically sustainable and sound golf courses which are made by eco-friendly approaches 2)Basic conditions of eco-friendly golf courses (1)The most suitable sites (2) Conservation of existing ground as much as possible (3)Proper use of agricultural chemicals which have great impacts on the environment (4) Reasonable use of fertilizers (5) Developing a specialized fertilizer only for grass (6) Adaptation of organic agriculture (7) Improvement of grass sorts (8) Establishing reservoirs for purifying the water from golf courses 3) Eco-friendly golf courses (1) Location-Enough area /Gentle slope/Winding ground/Including lakes or streams /Not crossing wind's main direction Facing south or southeast /Suitable soIl for grass /Good drainage /Low level of underground water (2)Course layout and design -Consideration about existing contours as much as possible -Adaptation of Scotish design trend -Various holes' configuration -Consideration toward surrounding landscapes -Reducing grass areas -Giving buffer zones -Adapting computer methods in the process of site analysis and design (3) Eco-friendly considerations in constructing and managing golf courses -Protection of wildlife -Reuse of existing forests and preservation of topsoil -Renovation of old-fashioned courses -Reducing grass areas -Purification of water -Standization of management -Strict regulations against chemicals -Recycling organic materials -Through separation of the water inside golf courses and out of bounds -Getting proper construction works done in a due time 4.Eco-friendly considerations from a viewpoint of cultural environment 1) Well-matched landscape design and events planning 2) Implement of identifications and awarding systerns 3)Acknowledgement of superintendents' qualitications in the maintenance of golf courses 4)Increasing public golf courses and keeping good relationships with the neighbors near golf courses Key words: Pro-environmental development, Golf course.

  • PDF

A Comparative Analysis on Generated Construction Waste Quantities in a Case Study for Deconstruction of an Apartment (공동주택의 분별해체 시험시공을 통한 건설폐기물 발생량 비교 분석)

  • Kim, Hyojin;Kang, Leenseok;Kim, Changhak
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.63-70
    • /
    • 2014
  • Deconstruction of the building must be applied firstly in order to improve recycling and reuse of construction wastes. In this study have done a case study for deconstruction of an apartment. All construction waste(CW) which will be generated during deconstruction was examined in each part of the building. Because drawing did not exist in most of the old building, we drew up floor plans of buildings. After analyzing these drawings, estimated quantities of CW. It was measured working time of labor and equipments for deconstruction and general demolition on each building of the apartment. In addition, it was proposed in the volume and weight per unit after analyzing detailed measurement of CW which was generated in the process of deconstruction and traditional demolition. It suggested recovery rate at a site, volume and weight conversion factors, and waste basic unit per area that based on the results of comparative analysis on the amount of CW which is calculated from drawing and generated at a site. These factors will be used fundamental materials for estimating quantities and treatment cost of CW, and scheduling of works.

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.