• Title/Summary/Keyword: recycled materials

Search Result 905, Processing Time 0.026 seconds

A Development of Cold-Mixed Reclaimed Asphalt Pavement Materials (도로포장용 상온 재생 아스팔트 혼합물 개발)

  • Lee, Jong-Man;Kim, Nak-Seok;Kim, Wan-Sang;Hong, Eun-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • In order to use recycled aggregate as pavement base or subbase materials, the US and many other European countries have started research since the early 1980s. Korea also had a recycle idea as a plan for the vast amount of construction wastes due to the downtown renovation in the 1990s, but was not put into practical use. After the resources saving and recycle expedition law in 1994, wastes from construction sites that have more than a certain amount of construction budget were recycled as pavement base and subbase materials, but now, researches are being conducted to use them as paving materials. The use of construction wastes is meaningful in many ways. It helps the natural conservation and aggregate consumption, and also improves pavement performance. This research presents a development of cold-mixed reclaimed asphalt pavement materials using recycled aggregates.

An Experimental Study to Determine the Mechanical Properties of Recycled Aggregate Separated from Demolished Concrete and Recycled Aggregate Concrete (폐 콘크리트에서 분리된 재생골재와 재생콘크리트의 공학적 특성규명을 위한 실험적 연구)

  • 전쌍순;이효민;황진연;진치섭;박현재
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Recently, the reuse of coarse aggregate derived from demolished concrete was introduced into practice with two environmental aspects: protection of natural sources of aggregate and recycling of construction waste. However, recycled aggregate has been used for the very limited application such as subbase material for pavement and constructional filling material because it was considered as low quality constructional materials. In the present study, in order to examine the possibility that recycled aggregate can be used for concrete mixing, we conducted various experimental tests to identify mineralogical, chemical and mechanical properties of recycled aggregate and to determine the workability and mechanical properties of recycled aggregate concrete (RAC). The cement paste and mortar contained in recycled aggregate significantly affect the basic mechanical properties of aggregate and the workability and mechanical properties of RAC. However, RCA mixed with the proper replacement ratio of recycled aggregate shows the comparable compressive strength and freeze and thaw resistance to those of normal concrete. Therefore, it is considered that recycled aggregate can be widely used for concrete if the cement paste and mortar can be efficiently removed from recycled aggregate and/or if the effective replacement ratios of recycled aggregate are applied for mixing concrete.

A Study on the Structural Characteristic of Recycled Aggregate Concrete Reinforced Steel Fiber (강섬유 혼입 순환골재 콘크리트의 구조적 특성에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Park, Young-Bai;Kim, Jeong-Hoon;Cho, Chang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.35-42
    • /
    • 2008
  • In this study, a sample was fabricated according to the recycled aggregate replacement level(0%, 30%, 60%), and the steel fiber mixing status in order to use recycled aggregate as a concrete alternative coarse aggregate, and then the materials and structural characteristics of recycled aggregate and steel fiber which impacted the reinforced concrete were analyzed. A conclusion was derived as follows. After considering the results of various material experiments and mock-up test, when a flexural strength and a ductility factor is increased and the replacement level is increased through mixing the steel fiber with the recycled aggregate concrete, the ductility and flexural strength reduction seems to be inhibited by adding the steel fiber. Also, it is indicated that the recycled aggregate has almost-similar compressive strength, tensile strength flexural strength and ductility capacity to the concrete which using the general gone even though the steel fiber is used and the replacement level is increased to 30%. Accordingly, the reinforced concrete frame using the steel fiber mixture and recycled aggregate seems to apply to the actual structure.

Eco-Friendly Powder and Particles-Based Triboelectric Energy Harvesters

  • Rayyan Ali Shaukat;Jihun Choi;Chang Kyu Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.528-535
    • /
    • 2023
  • Since their initial development in 2012, triboelectric nanogenerators (TENGs) have gained popularity worldwide as a desired option for harnessing energy. The urgent demand for TENGs is attributed to their novel structural design, low cost, and use of large-scale materials. The output performance of a TENG depends on the surface charge density of the friction layers. Several recycled and biowaste materials have been explored as friction layers to enhance the output performance of TENGs. Natural and oceanic biomaterials have also been investigated as alternatives for improving the performance of TENG devices. Moreover, structural innovations have been made in TENGs to develop highly efficient devices. This review summarizes the recent developments in recycling and biowaste materials for TENG devices. The potential of natural and oceanic biowaste materials is also discussed. Finally, future outlooks for the structural developments in TENG devices are presented.

Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites (순환잔골재 및 플라이애시가 PVA 섬유보강 시멘트 복합체의 역학적 특성에 미치는 영향)

  • Nam, Yi-Hyun;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do;Kim, Sun-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • As the amount of construction wastes increase, reuse of recycled materials is being considered in research areas. While there are many experimental investigations focusing on development of mortar and concrete using the recycled materials, the studies regarding the fiber-reinforced cement composites (FRCCs) using recycled materials are still limited. In this paper, an experimental attempt has been made to investigate the effect of recycled fine aggregates and fly ash on the mechanical properties of PVA FRCCs. The cement and natural sand were respectively replaced by fly ash and recycled fine aggregates at two content levels, 25% and 50%. Ten types of PVA FRCCs mixes were fabricated and tested to investigate the flexural, compressive and direct tensile behaviors. The test results show that flexural, compressive and direct tensile strength were decreased with increase in fly ash content at all ages. In particular, flexural, compressive and direct tensile strengths of specimens, containing 50% recycled fine aggregates and 50% fly ash, showed the lowest values. The modulus of elasticity of specimens showed similar trend to the 28-day compressive strength. Poisson's ratio was increased with increase in fly ash and recycled fine aggregates content.

Compatibility of the Recycled Linerboard Made in Acid Sizing System under Neutral or Alkaline Papermaking Conditions (산성 사이징된 재활용 섬유와 중성 사이징의 상용성)

  • Seo, Man Seok;Lee, Kyong Ho;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Neutral or alkaline papermaking provides many advantages in paper strength and processing conditions. It also provides the opportunity of using calcium carbonate fillers in papermaking. These diverse advantages have made almost all paper machines of printing and writing papers run under neutral and alkaline conditions. On the other hand, linerboard machines, which use recycled papers as a raw material, are running under acid conditions using a rosin sizing system. Because the recycled raw materials used by the linerboard industry contain significant amounts of alkaline papers, the linerboard industry has an interest in the possibility of using the neutral or alkaline papermaking opportunity. In this study, the compatibility of the recycled linerboards under neutral or alkaline papermaking conditions was examined by recycling them under various pH conditions. The sizing degree of the papers recycled under neutral or alkaline was significantly lower than that of acid formed papers indicating that during the neutral or alkaline recycling process the rosin sized papers lost their sizing efficiency. Recycling of acid formed linerboards under neutral or alkaline conditions increased the amount of foam, and the foam contained substantial amount of solid materials derived from the acid sizing systems. Use of cationic polyelectrolytes including PEI and poly-DADMAC improved the sizing degree of the recycled papers under neutral and alkaline conditions. PEI decreased the foam generation as well while poly-DADMAC did not show any reducing effect of the foam. These results suggest that PEI forms coordinate bonds with rosin acid and precipitate them onto the surface of recycled fibers, while the reaction products between poly-DADMAC and rosin acid ions still remain water soluble under neutral or alkaline conditions.

Concrete Pavement for the Access Road using Recycled Concrete Aggregate Crushed in-situ (현장파쇄 재생골재를 사용한 부체도로 콘크리트 포장)

  • Shim Jae Won;Kim Jin Cheol;Jo Kyu Seong;Choi Kang Sick
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.348-351
    • /
    • 2004
  • In this study, the recycled concrete aggregates crushed in-situ were used for the access road pcc (portland cement concrete) pavement. Based on laboratory results, the properties of materials, mixture proportioning, blend rates, and application conditions were investigated prior to trial application, and the various problems on recycled concrete aggregate under construction have been comprehensively checked.

  • PDF

Study of Light Weight Concrete Using Aggregate of Waste Plastic Materials (폐플라스틱 제품의 골재를 이용한 경량 콘크리트에 관한 연구)

  • 한상묵;조명석;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.7-12
    • /
    • 2003
  • In scrapped material field, about ten millions ton of waste plastic materials are produced in korea. However recycling rate of waste plastic materials have above 25%. Therefore, it is urgently needed that they are used as recycled materials in order to prevent environment pollution and grain economic profits. In this paper, physical and mechanical properties of light weight concrete using waste plastic materials for aggregates are described in order to develop a light weight concrete with the aggregate made from waste plastic goods, it was carried out many experiments on mix proportion and strength. According to the experimental results, high-strength mortar was necessary to make light weight concrete using aggregate of waste plastic materials. Especially, considering the side of recycling of plastic wastes, it is recommended that recycled aggregates made from waste plastic materials is applied to light weight concrete.

  • PDF

Mechanical Properties and Morphology of the Recycled Thermoplastic Elastomer Molding (재생 엘라스토머 수지의 기계적 물성과 모폴로지)

  • No, B.S.;Lee, G.H.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.31-35
    • /
    • 2007
  • Automotive weather strip should have good weather ability, sealability, durability, etc. to perform its duty as body sealing for vehicles under different harsh environments. Due to its comprehensive properties, thermoplastic vulcanizate(TPV) is widely employed in weather strip as alternative for ethylene propylene diene rubber(EPDM). In this study, the influences of the recycled TPV on the tensile strength and hardness were investigated. As results of the injection molding experiment, the recycled TPV's tensile strength and hardness were higher than the virgin TPV and recycled TPV's extension was improve. The morphology showed that recycled TPV's rubber particles became smaller than virgin TPV's rubber particles.

Effects of Capping with Recycled Aggregates and Natural Zeolite on Inhibition of Contaminants Release from Marine Sediment (순환골재와 천연제올라이트 피복에 의한 연안퇴적물 오염물질 용출 차단 효과)

  • Kim, Young-Kee;Shin, Woo-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.546-551
    • /
    • 2016
  • In this study, capping with recycled aggregate and natural zeolite in marine sediment was performed to investigate its inhibitory effect on pollutants released from sediment to seawater. An experiment was performed by capping with amendments for 60 days, and concentrations of organic matter (COD), nitrate, phosphate and metallic elements (Ni, Zn, Cu, Pb, Cd, As, and Cr) were measured. Two capping materials effectively suppressed pollutant release. Recycled aggregate showed better effectiveness for organic pollutant, nitrate and phosphate release. Meanwhile, natural zeolite was effective for metallic elements. As a result, recycled aggregate and natural zeolite can be considered as cost-effective/inexpensive capping material candidates. Also, the capping material can be selected according to the target pollutant.