• Title/Summary/Keyword: recycled coarse aggregates

Search Result 135, Processing Time 0.026 seconds

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Effect of Replacement of Recycled Coarse Aggregate with 13mm on Engineering Properties of the Concrete (13mm 크기 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Kang, Byeog-Hoe;Zhao, Yang;Park, Jae Yong;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.137-138
    • /
    • 2014
  • The aim of this research is suggesting the method of obtaining well-graded aggregates for concrete replacing the recycled aggregate which size range is from 5 to 13 mm to currently used gap-graded natural aggregates which size range is only 13 to 25 mm. according to the tests results, the workability of concrete was improved with replacing the aggregates of 5 to 13 mm of size range because of compensating gap-grading. Furthermore, there was an improvement in compressive strength when the aggregates of 5 to 13 mm of size range was replaced because obtained well-graded aggregates contributed on increasing adhesiveness and filling internal pore system. Comparing replacing recycled aggregate to natural aggregate, there was no significant difference on the performances.

  • PDF

The Improvement of Properties of Recycled aggregates using Concrete Waste by Pre-heating Method. (예비가열법에 의한 폐콘크리트 재생골재의 물성개선)

  • 최현수;김효열;최봉철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.73.2-79
    • /
    • 2003
  • The purpose of this study is to provide the basic data on the optimum method for interfacial separation for an effective recycle of concrete waste by using the thermal properties of concrete. Therefore, this study is proceeded by dividing the interface of concrete into cement paste and fine aggregates or mortar and coarse aggregate, considering the aspect of recycled cement and aggregate as the recycling use of concrete waste. As results of the experiment, in case of recycle cement, the interfacial separation is easily appeared, but it is shown that the mixed amount of powder included in fine aggregate doesn't greatly decrease. But, in case of recycle coarse aggregate, the effect of interfacial separation by preliminary heating is predominant. Especially, the bonding rate of mortar is the lowest when it is heated 5 times for 120 minutes at $300^{\circ}C$. Hence, it is considered that it will be an excellent effect of quality control when the results of this study is applied to a manufacturing system of recycle coarse aggregate which is about to put into practical use.

  • PDF

Quality Improvement of Recycled Aggregates from Waste Concrete by the heating and grinding

  • Kim, Hyung-Seok;Han, Gi-Chun;Ahn, Ji-Whan;Park, Jae-Seok;Kim, Hwan;Kim, Kyung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • To examine the grinding effect through preheating of waste concrete as a way of retrieving coarse aggregates from waste concrete, the removal rates of cement mortar and paste of both recycled aggregates and heated and grinded ones were investigated. As the preheating temperature increased, the removal rate of cement mortar from waste concrete was raised, and this kind of removal hardly affected the abrasion rate and specific gravity of aggregates. On the other hand, when it was treated over 40$0^{\circ}C$ of preheating temperature, the absorptance was reduced to less than 2.17, and cement mortar was effectively separated from waste concrete. It could meet the Korean Standards on recycled aggregates for concrete, and it is expected to expand the scope of utilization by making it possible to retrieve the aggregates which have the properties close to natural aggregates.

  • PDF

An Experimental Study on the Mechanical Properties of Recycled Aggregate Concrete Containing Admixtures (혼화재를 사용한 재생굵은골재 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 백철우;김호수;반성수;최성우;류득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.223-228
    • /
    • 2003
  • Recently, owing to the deterioration of reconstruction and the construction, much of the construction waste is discharged in our construction field, and the amount of construction waste is rapidly increased. These waste are raised to financial and environmental problems, so the method of reusing waste concretes has been studied and carried out many direction. Especially being want of resources, if waste concrete could be recycled as aggregates for concrete, it will contribute to solve the exhaustion of natural aggregate, in terms of saving resources and protecting environment. This study is that the mechanical properties of concrete with recycled coarse aggregate were investigated for types of mineral admixture and the substitution of recycled coarse aggregate. The result of this study, in case of using mineral admixture, the property of fresh concrete was rised. And the property of harden concrete for the substitution ratio of recycled coarse aggregate was decreased. But the property of concrete with mineral admixture was better than that of concrete used only cement.

  • PDF

Use of waste glass as coarse aggregate in concrete: mechanical properties

  • Yan, Lan-lan;Liang, Jiong-Feng
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The possibility of using recycled coarse glass aggregates as a substitute for natural crushed stone are relatively limited. In order to promote it for engineering application, this paper reports the effect of coarse glass aggregate on mechanical behavior of concrete. The coarse aggregates are substituted for coarse glass aggregate (CGA) as 0%,20%,40%,60%,80% and 100%.The results show that increasing the coarse glass aggregate content cause decrease in compressive strength, the elastic modulus, the splitting tensile strength, the flexural strength. An equation is presented to generate the relationship between cube compressive strength and prism compressive strength, the relationship between cube compressive strength and elastic modulus, the relationship between cube compressive strength and splitting tensile strength, the relationship between cube compressive strength and flexural strength of coarse glass concrete.

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

Flexural behavior of reinforced recycled aggregates concrete beam after exposed to high temperatures

  • Longshou Qin;Xian Li;Ji Zhou;Ying Liang;Wangsheng Ou;Zongping Chen
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.201-210
    • /
    • 2023
  • This paper investigates the flexural behavior of reinforced recycled aggregates concrete (RRAC) beams after exposed to high temperatures. The experimental results from 17 specimens were present and compared with temperatures, recycled coarse aggregate (RCA) replacement percentages, and concrete strength as variables. It was found that the high temperature would not cause an observable change in the failure pattern. However, high temperature can significantly reduce the stiffness and ductility, and accelerate the damage degradation of specimens. After exposure to 600℃, the ultimate bearing capacity of the specimens decreased by 20%-30% The mechanical properties of RRAC beams after high temperatures were barely impacted by the replacement percentages. Increasing the concrete strength of RCA could effectively improve the bearing capacity and peak deflection of RRAC beams after exposed to high temperatures. Furthermore, the calculation method of the bending bearing capacity and deflection of RRAC beams was also discussed.