• Title/Summary/Keyword: recycle-treatment

Search Result 225, Processing Time 0.019 seconds

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.

Recovery of Silicon Wafers from the Waste Solar Cells by H3PO4-NH4HF2-Chelating Agent Mixed Solution (인산-산성불화암모늄-킬레이트제 혼합용액에 의한 폐태양전지로부터 실리콘웨이퍼의 회수)

  • Koo, Su-Jin;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.666-670
    • /
    • 2013
  • Recovery method of silicon wafer from defective products generated from manufacturing process of silicon solar cells was studied. The removal effect of the N layer and antireflection coating (ARC) of the waste solar cell were investigated at room temperature ($25^{\circ}C$) by variation of concentration of $H_3PO_4$, $NH_4HF_2$, and concentration and types of chelating agent. Removal efficiency was the best in the conditions; 10 wt% $H_3PO_4$ 2.0 wt% $NH_4HF_2$, 1.5 wt% Hydantoin. Increasing the concentration of $H_3PO_4$, the surface contamination degree was increased and the thickness of the silicon wafe became thicker than the thickness before surface treatment because of re-adsorption on the silicon wafer surface by electrostatic attraction of the fine particles changed to (+). The etching method by mixed solution of $H_3PO_4$-$NH_4HF_2$-chelating agents was expected to be great as an alternative to conventional RCA cleaning methods and as the recycle method of waste solar cells, because all processes are performed at room temperature, the process is simple, and less wastewater, the removal efficiency of the surface of the solar cell was excellent.

Investigation on Economical Feasibility for Energy Business of Waste Water Sludge Discharged in 'A' Industrial Complex (A-산업단지 발생 슬러지의 에너지화를 위한 경제성 검토)

  • Byun, Jung-Joo;Lee, Kang-Soo;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.61-74
    • /
    • 2012
  • Industrial complexes in Korea have been vigorously established by economic development plan and development policy of industry in 1960s. Recently, Korean government has promoted Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park In this study, we analyzed the physical and chemical properties for the sludges discharged from A industrial complex. And we investigated the economic feasibility and environmental impact of sludge to energy facilities. The analysis results indicated that the petrochemical industry were 92% in sludge production, the highest treatment amount was landfill, followed by incineration and recycling and then ocean disposal. Wastewater sludge and process sludge samples are collected and analyzed to use as basic data on economic feasibility and environmental impact. Weighted average heating value of sludge samples was 3,891kcal/kg. Based on this data, installation and operation costs, operation returns of operating the drying facility are estimated, compared with cogeneration facility. And this study examines how the payback period of each simulation(total 8 case) with the important parameter changes. As a result, it was found that what needs the shortest payback period is 3years with connection of drying facility and cogeneration facility based on the government's financial subsidy system.

Effects of pig manure composts with different composting periods on feeding rate, biomass and cocoon production of earthworm(Eisenia fetida) (돈분 퇴비의 부숙기간이 줄지렁이의 섭식률, 생체량 및 산란율에 미치는 영향)

  • Bae, Yoon-Hwan;Park, Kwang-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • Effects of pig manure with various composting periods(0, 15, 30, 50, 80 days) on feeding rate, biomass, cocoon production of earthworm(Eisenia fetida) population and physicochemical property of vermicast produced from pig manure were investigated. The feeding rate of earthworm was increased with longer composting period of pig manure. But the biomass production of earthworm population was highest upon the pig manure composted for 30 days. Upon the pig manure composted for 80 days, the biomass was severely reduced. Cocoon production was decreased with longer composting period and especially lower on the pig manure composted for 80 days. Values of pH, EC, C/N ratio of vermicasts produced from pig manure composts were lower than those of pig manures. And the organic material contents of vermicasts were uniformly reduced irrespective of composting duration of pig manure, whose values were 35.9-39.8%. From these results, the optimum composting period of pig manure for vermicomposting could be 15-30 days. And the application of vermicomposting upon the composted pig manure could be an efficient way for the treatment of pig feces, which can stabilize and recycle the organic wastes more rapidly than the conventional composting method.

Preparation of Multi-functional Brick Using MSWI Fly Ash (소각재를 이용한 건축외장재 제조)

  • Ban, Hyo-Jin;Park, Eun-Zoo;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • With the advance of industrialization and urbanization, a lot of waste has been discharged and treated by incineration. But fly and bottom ashes are generated in this process. In addition, the treatment method to recycle sewage sludge and melting slag is required to manage these wastes. The objective of this research was to prepare of multi-functional brick which were made from MSWI (Municipal solid wastes incinerator) fly ash, sewage sludge and slag. The bricks were made by mixing raw materials and then drying for 24 hours. Next, they were dried for 24 hours at $160^{\circ}C$ and fired for 2 hours. Calcination temperature was changed to discuss the effect of temperature from $1,080^{\circ}C$ to $1,130^{\circ}C$. Compressive strength of a brick was creased with the increase of temperature. To increase mixing ratio of fly ash and slag reduce the compressive strength the optimal condition was the mixing ratio of fly ash : melting slag : sewage sludge : clay as 10 : 20 : 5 : 65 and $1,150^{\circ}C$ of calcination temperature. Compressive strength was obtained as about 41 MPa at this condition.

A Study on the Integrated Management System of Municipal Solid Waste from Seoul Metropolitan City (서울시 일반폐기물의 통합적 관리체계에 관한 연구)

  • 우세홍;홍상균
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • The integrated solid waste management for Seoul Metropolitan city can be established on the basis of the following hierarchy of priorities: 1. Efforts for source reduction should be propelled by both government and citizens to achieve the effects of resource conservation. The adequate production and consumption which are environmentally amenable and sustainable can be induced by the reasonable imposition of deposit money for waste treatment to one-time use products. To accomplish source reduction effectively, the induction of legal and institutional regulation of producer and consumer participation is requisite. 2. For resource recovery, wastes generated should be recycled as far as practicable. Community residents are responsible to separate discharge, the authorities concerned have responsibility of separate collection, and recycling industry should be assissted through tax reduction and financing. Resource separation facilities can be constructed at Kimpo Metropolitan landfill site for wastes not separately collected due to some unavoidable circumstances. 3. Garbage should be composted. Garbage is uneconomical for incineration, because it has high moisture content and low calorie, thus there is no reason for the incineration of garbage even though garbage is classified into combustibles. Composting facilities can be located at sites which are not densely populated and easily accessible to transportation, for example, Kimpo Metropolitan landfill site. Compost produced can be managed by the authorities for the use of fertilizer to a green tract of suburban land and farms. 4. Nonhazardous combustible wastes not recyclable can be utilized for thermal recovery at the incinerators which are completely equipped with pollution control devices. According to the trend of local autonomy and the equity principle of local autonomous entities, incineration facilities of minimal capacity required can be constructed at each districts of Seoul Metropolitan city which have organized local assembly. In case of Yangcheon district, the economically combustible waste quantity is about 260 tons/day which exceeds 150 tons/day, the incineration capacity of existing facility. But, from now on, waste quantity can be reduced substantially by the intensive efforts of citizens for source reduction and recycling and the institutional support of administrative organizations. Especially, it is indispensable for the government to constitute institutional and technological bases that can recycle paper and plastics form 43% of waste generated. A good time for constructing of incineration facilities for municipal solid waste can be postponed to the time that pollution control technologies of domestic enterprises are fully developed to satisfy the standards of air pollution prevention, because the life expectancy of Kimpo Metropolitan landfill site is about 25 years. Within this period, institutional improvements and technological advancements can be attained, while the air qual. ity of Seoul Metropolitan city can be ameliorated to the level to afford incineration facilities. 5. For final disposal, incombustibles and ash are landfilled sanitarily at Kimpo Metropolitan landfill site.

  • PDF

Removal of organic Carbon, Nitrogen and Phosphorus in Wastewater based on tapered Aeration with Bacillus sp. (점감포기에 의한 바실러스 특성을 이용한 폐수의 유기물질 및 질소, 인 처리에 관한 연구)

  • Kim, Pan-Soo;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.861-866
    • /
    • 2007
  • This study was conducted to investigate an aeration tank with RBC process attached Bacillus sp. known as a suitable microorganism for the removing of organic carbon, nitrogen and phosphorus. An aeration tank was based on tapered aeration because Bacillus sp. was well grown in this like environment conditions. The biofilm process with Bacillus sp. as an advanced treatment process could be a best technology for the prominent removal of organic carbon, nitrogen and phosphorus if the mechanism in the process is verified. The operation conditions of DO in the tapered aeration tank were maintained as $1.2{\sim}1.5mg/L$ in aeration tank1, as $0.3{\sim}0.5mg/L$ in aeration tank 2 and less than 0.2 mg/L in aeration tank 3, respectively. Lab-scale experiments were conducted, at room temperature, internal recycle rate was from 200% to 50% and returned sludge rate was from 100% to 50%. As a result, concentration of organic carbons, nitrogen and phosphorus in Period 1 (the time of Bacillus sp. adapted to environment) were decreased gradually. Ultimately, each removal rate in this biological experiment were TCODCr 94%, BOD 87%, T-N 85%, T-P 89% in Period 2. Hence, this process showed an excellent performance of the removal of organic carbon, nitrogen and phosphorus and this is an effective system fur treating of wastewater.

  • PDF

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.