• Title/Summary/Keyword: recycle ratio

Search Result 223, Processing Time 0.026 seconds

The Development of Multi Stage Separation Ball Mill for Producing Recycled Aggregate (순환 골재 생산을 위한 다단 박리형 볼밀 시스템 개발)

  • Lee, Han-Sol;Yu, Myouing-yuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2021
  • Natural aggregate regular exploitation has led to environmental and resource depletion issues; consequently, construction waste has become an important raw material in the supply of aggregate smoothly. The recycled aggregate produced in the most of recycled aggregate processing company in Korea has a high adhesion ratio of cement paste and mortar, which affects the water absorption ratio and density. Therefore, the quality of recycled aggregate needs to be improved. In this study, we improved the quality of recycled aggregate through the use of a multistage separation ball mill. This ball mill has a sieve which protects the ball mix and improves the motion. Products produced by using multistage separation ball mill were compared with various quality standard for utilization as recycle aggregate. Finally, we confirmed that the multistage separation ball mill can efficiently separate cement paste and mortar from natural aggregate and that it is suitable for the production of recycled aggregates.

Basic Factors for Quality Stability of Material Recycling Product Using Plastic Waste from Households (생활계 폐플라스틱 물질 재활용 제품의 품질안정화를 위한 기초 요인 검토)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Shin, Sung-Chul;Kim, Young-Sik;Lee, Hoo-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.436-443
    • /
    • 2020
  • In this paper, we tried to examine the composition ratio of plastic waste from households according to the generated city and the qualities according to the production time of material recycling products. As a result, the composition ratio of recyclable plastic waste among the total plastic waste according to the generated cities is 64.5~90.4%, showing a big difference by city. In addition, the quality evaluation of material recycling products by production time for four months showed that the average tensile strength was 12.33MPa, the average elongation rate was 5.94%, the average density was 1.35g/㎤ and the average ash content was 3.66%.

The Effect of Manufacturing Conditions of Coated Yarn Using Anti-Static Thermoplastic Polyurethane M/B on Anti-Static Resistance (대전방지 열가소성폴리우레탄 M/B를 이용한 코팅사 제조 조건이 대전방지성에 미치는 영향)

  • Yedam Jeong;Jieun Kwon;Sunmin Kwon;Seehyeon Chae;Hyunjea Cho;Wooseok Kim;Mikyung Kim;Jongwon Kim
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.20-28
    • /
    • 2023
  • In this study, TPU resin for coating was prepared by varying the mixing ratio of antistatic TPU and recycled TPU to manufacture permanent antistatic materials. The coated yarn was prepared by coating on the nylon yarn, and then the thermal, rheological, mechanical properties and antistatic properties were analyzed. In addition, antistatic properties and durability were confirmed after manufacturing UD fabrics using coated yarns. The mixing ratio of antistatic TPU and recycled TPU was most appropriate at 4:6, and the antistatic property had a surface resistance of 2.20 × 109 Ω and a static charge of 398 V. In the coating process, the coating speed was most appropriate at 0.21 m/s, and the surface resistance of the UD fabric manufactured with the coated yarn manufactured under this condition was 6.80 × 109 Ω and the static charge was 484 V. The UD fabric had a surface resistance of 7.21 × 109 Ω and a static charge of 517 V after washing 10 times, and it was confirmed that the permanent antistatic property was excellent.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

A Study on the Separation of Activated Sludge by Dissolved Air Flotation (가압부상법(加壓浮上法)에 의한 활성(活性)슬러지 혼합액(混合液)의 고액분리(固液分離)에 관한 연구(研究))

  • Yang, Sang Hyun;Ra, Deog Gwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.21-29
    • /
    • 1985
  • An effective technique of sludge separation is required for concentrated activated sludge process. The dissolved-air flotation (DAF) has been shown to be efficient process for sludge separation. The factors affecting DAF process for activated sludge separation are type and concentration of sludge, air/solid ratio, ratio of pressurized water flow, pressure, sludge detention time, temperature, sludge and hydraulic loading rate, recycle flow rate of sludge and type and quantity of chemical aid. In order to study the optimal operation condition for sludge separation, the influence factors such as type and concentration of sludge, ratio of pressurized water flow and pressure are investigated by the batch and continuous reactor experiments of DAF and sedimentation test. By the experimental investigation, the results are as follows; 1. For the bulking and concentrated sludge, DAF is more effective than sedimentation for the sludge separation. 2. In DAF, the critical ratio of pressurized water flow exist. The critical value varies with the pressure in the tank. That is, according to the pressure changes from 3 to $5kg/cm^2$, the critical value varies from 0.25 to 0.67 accordingly. 3. Pressure affects the ratio of pressurized water flow, but it does not show any influence upon the DAF efficiency directly. 4. Continuous experimental results was not better than those of batch.

  • PDF

Phenanthrene Uptake by Surfactant Sorbed on Activated Carbon (활성탄에 흡착된 계면활성제에 의한 Phenanthrene 흡착)

  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • Phenanthrene uptake by surfactant sorbed on activated carbon was investigated to recycle of surfactant in washed solution for contaminated soil. The partitioning of phenanthrene to the activated carbon coating with Triton X-100 as a surfactant was also evaluated by a mathematical model. Phenanthrene-contaminated soil (200 mg/kg) was washed in 10 g/L of surfactant solution. Washed phenanthrene in solution was separated by various particle loadings of granular activated carbon through a mode of selective adsorption. Removal of phenanthrene was 99.3%, and surfactant recovery was 88.9% by 2.5 g/L of granular activated carbon, respectively. Phenanthrene uptake by activated carbon was greater than that of phenanthrene calculated by a standard model for a system with one partitioning component. This is accounted for enhanced surface solubilization by hemi-micelles adsorbed onto granular activated carbon. The effectiveness factor is greater than 1 and molar ratio of solubilization to sorbed surfactant is higher than that of liquid surfactant. Results suggest that separation of contaminants and surfactants by activated carbon through washing process in soil is much effective than that of calculated in a theoretical model.

The Characteristics on Compressive Strength of Mixed Coal Ash in Ash Pond (회사장 혼합석탄재의 압축강도 특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.61-66
    • /
    • 2014
  • The various recycling methods of mixed coal ash have been developed considerably and it's recycling quantity has been increased. However, the more relatively finer grain content of coal ash in ash pond is increased the more it's quantity is increased in recycling as products for drainage in soft ground etc. Accordingly, the geotechnical properties of mixed coal ash in ash pond would be inferior and it's recycling rate should reach the limitations in increase. In this study, to recycle mixed coal ash contained fine grain in considerably amount as products for strength, etc. By adding binder to it and manifesting, it's compressive strength is stronger than the criteria, these are suggested; 1) the variety of compressive strength test performed on mixed coal ash of various grain distributions as main material, 2) the kind of binder, it's mixing quantity and the optimum content rate range of fine grain coal ash that the compressive strength stronger than a certain compressive strength is manifested. Cement is more excellent than quicklime as binder in manifesting stronger compressive strength and the sieve type to sort it is #40 sieve in order to recycle all mixed coal ash in ash pond efficiently as products for drainage as well as products for strength, etc. And, it could increase insufficient compressive strength remarkably that content of pure sand is more in the rate as pure sand and the part of mixed coal ash in ash pond to pass through #40 sieve is mixed in the ratio of 2 to 8.

Biofilm Processes for Volume Decrease in Recirculating Water Treatment Systems for Aquaculture

  • Kim Jeong-Sook;Yoon Gil-Ha;Ghim See-Jun;Kang Lim-Seok;Lee Byung-Hun
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.242-249
    • /
    • 1998
  • The engineering aspect of water treatment processes in the recirculating aquaculture system was studied. To recycle the water in the aquaculture system, a wastewater treatment process was required to maintain high water quality for the growth and health of the cultured fish. In this study, three different biofilm processes were used to reduce the concentration of organic matters and ammonia from the recirculating water - two phase fluidized bed, three phase fluidized bed, and trickling filter. The objectives of this research were to evaluate the optimum treatment conditions of the biofilm processes for the recirculating aquaculture system, and thereby reduce the volume of biofilm processes, which are commonly used for the recycle water treatment processes for aquaculture. The result of this study showed that the removal efficiency of organic matters by trickling filter was found to be lower than that of the fluidized bed. In the trickling filter system, anthracite showed better organic removal efficiency than crushed stone as a media. In the two phase fluidized bed, the maximum removal efficiency of either organics or ammonia was obtained when both the packing rate of media was maintained to $40\%$ of total reactor depth excepting sediment zone and the bed expansion rate was maintained to $100\%$. When 100 tilapia (Oreochromis niloticus) of each average 200g was reared, the pollutant production rate was 0.07g $NH_4\;^+-N/kg$ fish/day and 0.06g P04-3-P/kg fish/day, and sludge production rate was 0.39 g SS/kg fish/day. In the two phase and three phase fluidized bed, the volume of water treatment tank could be calculated from an empirical equation by using the relationship between the influent COD to $NH_4\;^+-N$ ratio (C/N, -), media concentration (Cm, g/L), influent ammonia nitrogen concentration (Ni, mg/L), effluent ammonia nitrogen concentration (Ne, mg/L), bed expansion rate $(E,\;\%)$, and influent flowrate $(Q,\;m^3/hr)$. The empirical equation from this study is $$V_2\;=\;10^{3.1279}\;C/N^{3.5461}\;C_m\;^{-3.7473}\;N_i\;^{4.6477}\;E^{0.0326}\;N_e\;^{-0..8849}\;Q\;(Two\;Phase\;FB) V_3\;=\;10^{11.7507}\;C/N^{-1.2330}\;C_m\;^{-6.5715}\;N_i\;^{1.5091}\;N_e\;^{-1.8489}\;Q (Three\;Phase\;FB)$$

  • PDF

A Pilot Study for Microfiltration of Alcohol Stillage Condensate and Permeate Recycle to Fermentation Broth (알코홀 증류폐액의 Pilot Scale 정밀여과와 여과액의 발효 재활용에 대한 연구)

  • 김영범;이기세;남궁견;김종현
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.403-408
    • /
    • 2001
  • Distillation condensate generated from downstream processing of microbial alcohol fermentation imposes a serious burden to biological wastewater treatment or anaerobic digestion due to its high contents of SS (suspended solids) and TN (total nitrogen), A pilot scale microfiltration of the stillage condensate with a stainless steel SCEPTER membrane of 0.1 ${\mu}$m pore size was carried out to remove SS which was mostly composed of microbial cell residue. A stable permeate flux was achieved when the decanter effluent containing 0.7% of SS was filtered under the conditions of X10 VCR (volume concentration ratio), 2.5 bar of TMP (transmembrane pressure), and 60$^{\circ}C$. When stillage condensate with 2.6% SS was treated directly with microfiltration, VCR below X3 was recommended for a long duration of filtration. The permeate and retentate obtained from microfiltration were recycled to make-up medium of fermentation. Adding permeate or retentate up to 30% of fermentation volume showed no distinguished undesirable influence during the course of alcohol fermentation. Although only slight improvements in the final amount of CO$_2$ evolution and alcohol content were observed, fermentation rate increased so that the required time to reach 450 L/ton of CO$_2$ evolution was shortened to 72% of that with normal media.

  • PDF

Estimation of Local Change in Hydrometeorologic Environment due to Dam Construction (댐 건설로 인한 국지 수문기상환경의 변화 추정)

  • Yoo, Chul-Sang;Ahn, Jae-Hyun;Kang, Sung-Kyu;Kim, Kee-Wook;Yoon, Yong-Nam
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.21-38
    • /
    • 2005
  • In this study, a model for analyzing the spatial effect of large dam reservoirs on local hydrometeorology was developed, and then actually applied to the Seomjingang Dam, Soyanggang Dam, Andong Dam, and Chungju Dam. The application included the analysis of land use using the satellite images to derive the change in albedo before and after the dam construction. Summarizing the modeling procedure and its application results are as follows. (1) The change in albedo was found to be closely related with the size of the dam, also the spatial limit of albedo change were estimated to be 10-20km for the Seomjingang Dam, 40km for the Soyanggang Dam, 20-30km for the Andong Dam, and 50km for the Chungju Dam. (2) The change in the coefficient of recycle (ratio of internal supply of moisture to the total available moisture) was found to be big within the narrow boundary of the. dam, but become smaller as the boundary becomes larger. (3) The correlation between the albedo and. coefficient of recycle was found high. Thus, it could be concluded that the change in land use due to dam construction has much effect on the moisture circulation structure. (4) The spatial range of hydrometeorogic effect was compared with the water surface area of dam reservoir. The result showed that the spatial range sensitively increased up to $50km^2$ of water surface area.

  • PDF