• Title/Summary/Keyword: recursive unscented Kalman filtering

Search Result 2, Processing Time 0.016 seconds

Recursive Unscented Kalman Filtering based SLAM using a Large Number of Noisy Observations

  • Lee, Seong-Soo;Lee, Suk-Han;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.736-747
    • /
    • 2006
  • Simultaneous Localization and Map Building(SLAM) is one of the fundamental problems in robot navigation. The Extended Kalman Filter(EKF), which is widely adopted in SLAM approaches, requires extensive computation. The conventional particle filter also needs intense computation to cover a high dimensional state space with particles. This paper proposes an efficient SLAM method based on the recursive unscented Kalman filtering in an environment including a large number of landmarks. The posterior probability distributions of the robot pose and the landmark locations are represented by their marginal Gaussian probability distributions. In particular, the posterior probability distribution of the robot pose is calculated recursively. Each landmark location is updated with the recursively updated robot pose. The proposed method reduces filtering dimensions and computational complexity significantly, and has produced very encouraging results for navigation experiments with noisy multiple simultaneous observations.

Relative Navigation with Intermittent Laser-based Measurement for Spacecraft Formation Flying

  • Lee, Jongwoo;Park, Sang-Young;Kang, Dae-Eun
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.