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Recursive Unscented Kalman Filtering based SLLAM using
a Large Number of Noisy Observations

Seongsoo Lee, Sukhan Lee*, and Dongsung Kim

Abstraet: Simultaneous Localization and Map Building (SLAM) is one of the fundamental
problems in robot navigation. The Extended Kalman Filter (EKF), which is widely adopted in
SILAM approaches, requires extensive computation. The conventional particle filter also needs
intense computation to cover a high dimensional state space with particles. This paper proposes
an efficient SLAM method based on the recursive unscented Kalman filtering in an environment
including a large number of landmarks. The posterior probability distributions of the robot pose
and the landmark locations are represented by their marginal Gaussian probability distributions.
In particular, the posterior probability distribution of the robot pose is calculated recursively.
Each landmark location is updated with the recursively updated robot pose. The proposed method
reduces filtering dimensions and computational complexity significantly, and has produced very
encouraging results for navigation experiments with noisy multiple simultaneous observations.

Keywords: Real-time SLAM, recursive unscented Kalman filtering, stochastic SLAM, vision-

based SLAM.

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is
an essential technique that localizes a robot in an
environmental map while estimating the map itself
with the localized robot pose, simultaneously. It is an
inherently complex problem since an error of the
robot pose leads to an error of the map and vice versa
[1,2]. Also, it should be operated in real-time.

One of the most well-established approaches to
solve the SLAM problem is based on an assumption
of Gaussian distributions for errors of the state and
observations. Given this assumption, the extended
Kalman filter (EKF) based approaches to SLAM [3-5]
have been developed since the first introduction by
Smith, Seif, and Cheeseman [6]. There have been
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several applications of these approaches in a number
of different environments, such as indoors [7],
underwater [8], and outdoors [9]. However, these
approaches require heavy computation as the number
of landmarks and their simultaneous observations
increase because they have the complexity of

O(N 2 ), where N is the number of landmarks [3,6].

This scaling problem arises because each landmark is
correlated to all the other landmarks. To overcome this
problem, various research projects have been
performed to optimize EKF based approaches to
SLAM [10-12]. The decouple stochastic mapping
(DSM) method [10] reduces the computational burden
by dividing the global map into multiple overlapping
sub-maps but only the single activated sub-map is
updated at each sampling time. In [11], the
compressed extended Kalman filter (CEKF) is applied

to achieve a computation time of O(N %), where
N; is the number of landmarks in the local area.
However, this approach still requires a computation
time of O(N ,%N 2/3 ) when the robot moves from one

local map to another. In [12], the constrained local
sub-map filter (CLSF) is presented to periodically
fuse a local sub-map into the global environment map.
It can reduce the computational complexity of
maintaining the global map estimation, but it still has

the complexity of O(Nz) from a global point of

view because the number of sub-maps is still
proportional to the number of landmarks.
Rao-Blackwellised particle filter (RBPF) is another
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attempt to reduce the scale problem by factoring the
state variables, which is sampling over a subset of the
state variables [13,14]. An application of RBPF to
SLAM was introduced first by Murphy [15].
FastSLAM 1.0/2.0 [16,17], which are variants of
RBPF, have a complexity of O(KlogN) for integrating
a single observation, where K is the number of
particles used at each sampling time. Although
FastSLAM 2.0 can even converge with a single
particle for special cases [17], its computational
complexity depends linearly on the number of
particles, which is scaled with the environment size.

This paper proposes an efficient method for SLAM
with a large number of landmarks and their
simultaneous observations. We aim at developing a
SLAM method using the recursive unscented Kalman
filtering. The proposed method is based on a
recursively marginalized Bayesian formula of SLAM
to update the state, composed of the robot pose and
landmark locations. The posterior probability
distributions of the robot pose and landmark locations
are represented by their marginal Gaussian probability
distributions. In particular, the robot pose is updated
by a recursive unscented Kalman filtering. Using this
updated robot pose, the observed landmarks are
individually updated. The proposed method can
reduce filtering dimensionality significantly and can
also reduce the computation requirements for filtering
with respect to the state update.

This paper is organized as follows: Section 2
introduces the theoretical concept of the proposed
method; Section 3 describes details of the method
based on the recursive unscented Kalman filtering;
Section 4 verifies the efficiency and localization
accuracy of the experimental results in unstructured
indoor environments, given multiple simultaneous
observations. Section 5 concludes this paper.

2. THEORETICAL CONCEPT OF THE
PROPOSED METHOD

A SLAM algorithm wuses dead reckoning and
relative observations to estimate the robot pose and to
build and maintain an environmental map. The dead
reckoning can be achieved by an odometry such as a
wheel encoder while relative distances of the
landmarks to the robot can be acquired by an external
sensor such as a stereo camera. Those sensor data are
formulated into two probabilistic models, the motion
model and the observation model, to estimate the
robot pose and the landmark locations. The motion
model which predicts the state of the robot pose at
time ¢, x, is given by the following probabilistic
function:

POy | x51,) & X = F(xo,u) + Wy, ey

where u, and w;, are robot control at time ¢ and noise of

the robot control between time #-1 and time ¢,
respectively. The observation model relating the robot

pose and the observed landmark location m, to the

observation z; is represented by the following
probabilistic function:

iz | Xp5 Mg, )&z, = hl.(xt,mci Y+, (=1L..n), (2)

where v; is observation noise. For all landmark
locations in a map, M, observed landmark locations

MCI" ={m

. .m } are computed from multiple

o>
simultaneous observations at time ¢, Z, ={z,...,2,},
where n is the number of observations at time t. The

unobserved landmark locations are denoted as M"“°.

In Bayesian sense, the posterior probability
distributions of the robot pose and landmark locations
for SLAM can be represented by a recursive formula
with respect to time sequences [18,19]:

p(xt’Mth’Zt—]a“t) =np(Z, | x;,, M)

e 3
% [P D) PO M1 270!y dle

where 7 is a normalizing constant, Z' ={Z,,...,Z,}

and o' = {u, ,-»4,}. In (3), the marginal probability
distribution of the robot pose x, represents its posterior
probability distribution:

p(xt \Ztazt_lau[)
-t 7,2
_[P(ng;naMUOb th’Zt‘laut) 4

dMuob

jp(x,,Mjln VAVARRTS' M.

Equation (4) is a recursive formula marginalizing (3)
with respect to all individual landmark locations at
specific time ¢, M while (3) is a recursive formula
with respect to time sequences. In (4), it is not
necessary to compute unobserved landmark locations,
M™", because the calculation of p(x, |Z,,Z",u")

doesn’t require them. Also, (4) can be rewritten by the
following  equations  which are recursively
marginalized with respect to observed landmark

locations at time ¢, M;” :

€n - n
j[ [peo. M | 2,2 ,u’)dmcl}ndcz

= [ [peo M 12,27y dome,y [amt (5)
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PG M 12,27
= dm

Cn

dm

Cn-1

=J.p(x,,mcn PAVARRTS dm, .

Equation (5) allows the robot pose to be updated
independently by each observation. It reduces the
computation load dramatically because the filtering
dimensionality is reduced from much higher
dimensions composed of robot pose and all observed
landmarks to the much smaller dimensions composed
of the robot pose and a single landmark. For
computing (5) efficiently, we make a reasonable
assumption that the robot pose and all landmark
locations are mutually independent. Using these
assumptions, (5) is rewritten by the following
equations (for details of the derivation, refer to the
Appendix A):

[P M 12,27ty aM

= J‘ Iﬂlp(zl lxt5m01 )PX1 dmcl A] dMC(‘;n

=p(x1.mg |21,B)

= J J‘ﬂzp(zz l x[’mcz )RXZ dmcz A2 dMCC::,

=P,y |27 B) (6)

(_"nn—lp(zn—l | Xt mcn_l )PX,,_l
= '[ :p(x[ ’mcn—l |Z]n_1 :B) An—l dmc
dm

n-1

n

= J‘Unp(zn l xt’mcn )PX,,, dmcn ’

=p(x;.mg, |z ,B)
where 77; 1s a normalizing constant and
Py,-p(x, [ B)p(m,, | B) (i=1),
Py,_p(x |2, B)p(m, | B) (i>1),
4 = p(z3 | %, m7)p(m. | B),

Ay = p(z3 | X m 7 )p(m7 | B),

An—l = p(Zn lxt’mcn )p(mcn |B)’
B=z""14

Similarly to deriving (6), the posterior probability

distribution of the observed landmark location m,, is

represented by its marginal probability distribution as
a recursive formula:

plme, 12,27 u)

- Iﬂ:jp(xt’M;n9Mu0b IZt,Zt_l,ut) eruobjl

dxth' (7
= || [pCe. M 12,2 ) au' | a,

= Ip(xtamci |Zt’Zt_1aut) dxt:

where M = ME]” ~m,,. Equation (7) can be rewritten
by the following equation, given the assumptions used
in (6) (for details of the derivation, refer to Appendix
B):
t-1 ¢t

[pGsme, 12,2 'y iy,
p(zi | xt’mci aZFI’uZ)
= || xp(x 12,27y | d, (®)
xp(m,, | 2,2~ u")

p(Zi |xtsmci)
xp(x, | Z,, 2"V u') | dx,,
xp(m,, | 27 u'™)

—

=7

where Z,' =Z, —z; and 7; is a normalizing constant.
Equation (8) permits each landmark to be updated
independently by its observation with p(x,|Z,,
Z7 'y, To simplify the computation of (8), p(x |
Z;,Zt_],u’) is replaced by the posterior probability
distribution of the robot pose, p(x; |Z,,Z"1,u’).
Equation (8) is then rewritten as follows:

PG | xm ) p(x 12,2 'y

/] 1 -1 dx,. (9)
xpm,, 120 u'™)

Given a large number of observations, p(x,|Z,,

Z'7 'y is almost equivalent to p(x, |Z;,Zt'1,u’)
because the robot pose can be converged without
using all of the observations. Thus, (9) can be used to
update the landmark locations if there are a lot of
simultaneous observations.

3. RECURSIVE UNSCENTED KALMAN
FILTERING BASED SLAM
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The posterior probability distribution for SLAM
can be simplified by (6) and (9) with the assumptions
of robot pose and all landmark location independences
between states. Their reduced dimensionalities allow
the complexity of the filtering to be reduced
efficiently. The computation of the two equations is
performed by unscented Kalman filters (UKFs) and
(6) is computed by a recursive unscented Kalman
filter because the UKF is more robust against the non-
linearity of a system model than EKF [20]. Please
note that the same robot pose updated by (6) is used to
calculate all observed landmark locations with (9).
Assuming Gaussian noise, the algorithm for
computing (6) and (9) is stated as follows:

Step 1: Estimate 7,p(z; | x,,m, )p(x, |zf,Z’_l,ut)p
(me, | z'7! u"), represented by joint Gaussian
distribution, for updating recursively the
robot pose x;. In case of i=1, the prior
Gaussian distribution of x,, p(x, iZH,u’ ),

is propagated from the motion model
represented in (1). The prior Gaussian

distribution of me, p(m, fZH,u’), is equi-
valent to that of the previous state.

Step 2: Obtain the marginal probability distribution
of x, p(x |zf,Z’_1,u’), represented by a
Gaussian distribution, from p(xt,mci fzf R
z! ,u' ) calculated in Step 1. Here, p(x, \zf ,
Zt"l,u’) is recursively used as the prior
probability distribution for calculating p(x,,

i+l -1
mci+1 |le+ Z ’ut)-

Step 3: Repeat Steps 1~2 until i = n. The posterior
probability distribution of the robot pose,

p(x,1Z,,Z" " ,u'),is obtained from 7 itera-
tions.
Step 4: Estimate 1,p(z; | x,,m.)p(x | Z,, 2"~ u')p

(mci | Z! _l,u’_l) represented by joint Gaussian

distribution for updating the observed
landmark m. The same p(x, |Zt,Z'_1,u’)
is used for updating all observed landmarks.

Step 5: Obtain the marginal Gaussian probability

distribution of ", p(mci |Z,,ZH,u’), from
-1 -1
nip(zilxtamci)p(xt |Z aZt ’ut)p(mci IZZ L

u’_l) calculated in Step 4.

Step 6: Repeat Steps 4~5 until all
landmarks are individually updated.

observed

Here, p(z;|x,.m,)p(x 12,27 u')p(m,, | 27 ')

and  p(z; | x,m.)p(x, lZnZtvl,ut)P(mci |z~
are estimated by UKF [20,21]. Because both
equations are similar except the terms p(x, |

z{,Z’_l,u’) and p(x, |Zt,Z’_1,ut), the computation
of them is formulated with a notation X; denoting

is represented by

the random vector [x;,m,, . X

uncorrelated joint Gaussian distribution with the mean

X; and covariance Py , as follows:

1\7()?1"1’)(,.“:> Prix, 0 (10)
i 0 Pmc.mc. y

where N(a,P,) denotes a Gaussian distribution
with the mean & and covariance F,. The prior

Gaussian distribution of x, and m, are represented
by N(%,P.) and N(m,B, , ), respectively.
1 1

To reduce complexity of the UKF computation, non-
augmented X, is used as in [21,22]. The updated

H

X with  N(X[,P{) s

I

calculated by the

following equations:

)A(;r =X, +Ki(z; - 2;),

i
+ T
-1
K; =Py, (P +R)™,
where K; is a Kalman gain and z; is an observation
with a covariance R;. P, . is the covariance of the

predicted observation Z; while Py . is the predicted
cross-correlation matrix of X; and z;,. In(11), F.

and Py, are calculated using the unscented

transformation (UT) [21,22] with X; and z; represented
by Gaussian distributions, through the observation
model represented by (2). The UT is a method for
calculating the statistics of a random variable which
undergoes a nonlinear transformation, and forms the
core of the UKF algorithm. It chooses a set of points
(so called sigma points and their weights) based on
the mean and covariance of a random variable. The
chosen points are fed into a nonlinear model (e.g., the
measurement function A(-) in (2)), and the weighted
statistics of the transformed points make an estimate
of the nonlinearly transformed mean and covariance
(for more details, refer to [21,22]). In the case of
updating the robot pose recursively, the initial prior
Gaussian  distribution of the robot pose x,
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N(x, B, ), is calculated using the UT with the prior
Gaussian distribution of the previous robot pose x;_
and the robot control at time ¢, and #,, through the
motion model represented by (1). The updated X,

is represented by the correlated joint Gaussian
distribution, N(X; .Py), as follows:

+ +
Xy X, XM,
o+ A+ A T + 1t t"e;
Xt =[%,m.1, P = (12)
i Xi + +
Me, Xy e Mg,

Now, the marginal probability distributions of the
robot pose x, and the landmark location m, are

computed with the joint Gaussian distribution
represented by (12) and are N(X; ,P;; x) and N (g,

+

2 m.)» respectively.
C'l ci

Table 1 provides a summary of the computational
complexity of the proposed method and the
conventional SLAM algorithms with respect to the
number of landmarks. The computation time of EKF
based SLAM and CEKF based SLAM depends on the
number of all landmarks in a map or the number of
landmarks in a local area regardless of the number of
observations at each frame. FastSLAM requires
O(KlogN) for integrating a measurement by the

maximum likelihood data association, where K and N
are number of particles and number of landmarks,
respectively. If it integrates » simultaneous observa-
tions, the computation time will be O(KnlogN).
Because the efficiency of FastSLAM depends
crucially on K, the number of the particles needs to be
kept within reason. On the contrary, the complexity of
the proposed method is proportional to only the
number of observed landmarks at each frame, and is
O(2n) for integrating »n simultaneous observations.

Table 1. Computational complexity of different
SLAM algorithms with N landmarks in a

map, Nf landmarks in a specific local

area, and » simultaneous observations at
each frame. FastSLAM is a particle filter

approach (K particles).
Required complexity for
landmark update
EKF based SLAM | O(N?)
O(Nz) in a local area,
CEKF based SLAM 3
O(N;N?) inaglobal area
FastSLAM O(KlogN) or O(KnloghN)
Proposed method | O(2n)

The new landmark location m?ew, first measured
1

by the observation z;, is initialized using the inverse

observation model. The inverse observation model is
represented as follows:

m™ =hl(x,, z),
pm"™ ™ | x,z) &y 9 G071 (13)
! (i=1L...,n).

The initial Gaussian distribution of new landmark
location m”™" is calculated using the UT with the

7

updated robot pose x, and the observation z;

represented by a Gaussian distribution, through (13).
4. EXPERIMENTAL RESULTS

To verify its validity in real applications, the
proposed method was tested in two different
experimental settings to accommodate varying floor
conditions and illuminations. Both experimental
settings are highly textured environments containing
numerous landmarks. The comparison between the
proposed method and FastSLAM 2.0 has been
performed with two different odometric noises for
each experimental setting.

The robot used in the experiments is a PowerBot—
AGV with a SICK laser range finder and two
BumbleBee stereo cameras from Point Grey Research,
as is shown in Fig. 1. Please note that only the single
stereo camera on the robot platform is used for the
SLAM experiments. Two experiments have been
performed. The first one is a 16.3m trajectory run with
215 images, and the second one is a 96.7m trajectory
run with 403 images. Both runs are driven manually
to achieve the ground truth data. For the first
experimental setting, the final location is measu-red
by the motion capture device (Vicon 640, MCam?2).

PowerBot-AGV with a SICK laser range
finder and two BumbleBee stereo cameras.

Fig. 1.
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(a) First experimental setting.

@@@’ @

(b) Second experimental setting.

Fig. 2. SIFT features extracted in sample images
(640x480).

For the second experimental setting, the robot is
returned to the initial position (0,0) as accu-rate as
possible by an operator.

For the landmarks, SIFT features [23] are extracted
as shown in Fig. 2. SIFT features are marked with
circles having various sizes which represent the SIFT
scale. The line inside these circles stands for the SIFT
orientation and the centre of circles is representative
of the SIFT location.

Fig. 3 shows a schematic diagram of the robot pose
in the process of observing a landmark. Given a robot
T

control u, =[Ad,,Ap,]" in terms of a translation

Ad, and a rotation Ag;, a new state for the robot

pose can be updated. The following equation is used
to obtain a discrete-time robot motion model:

Pep || Pept T Ay c0s(rg g +0.5A0;)

7, = ”y,t—l +Adt Sin(rg’,_l +05A¢[) R (14)

Vit
Yo g1 T AQ;

where the state of the robot pose denotes x, =[r,,

(200,020 Z(20)

Robot Base Frame

X
Global Reference Frame

Fig. 3. Robot and observation kinematics.

ry,t,reyt]r, which comprises Cartesian coordinates
{rx’t,ry,t} and its orientation 7,, with respect to the

global reference frame. The translation Ad, and
rotation A¢, are estimated by an odometer, where
their additive noises are assumed by uncorrelated
Gaussian noises with zero mean, and variances 0'3
and 0'2. Thus, the covariance of u,, 0'3, can be

written as follows:

2
O'd 0
ol = o o2l (15)
Oy

To predict 03 properly is not easy because of non-

systematic errors such as slippage.

The following equation, which transforms from the
3D landmark location of the global reference frame to
that of the camera frame, is used as the observation
model:

T
[Z(x),z‘ )i Z(z)ﬂ
q)l Sin(}”g,t) + ch Sin(rg’t) + T%y) + V(x)’i

(16)
_tw
= M ~ T Vo ,

@, cos(ry,;) = Dy sin(ry ;) =Ty +V(2),s

where  z; ={z(,y;,2(,)»2;);} represents the 3D
landmark location with respect to the observation

(camera) frame, whereas "m, ={"m . My
wm(z),ci} represents the 3D landmark location with
respect to the global reference frame. ®; is
(="M, +7%,) and @y is (Mmgy, . —1, ). Here,
V(x)i» Yyyi and v, ; are observation noises assumed
by additive uncorrelated Gaussians with zero mean

and their individual variances, denoted as orf(x)i,

2 2
Tl 804 Oy,

respectively. Ti,), Ty, and T,
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specify the location of the sensor with respect to the
robot base frame.

In our experiment, the variances with respect to
additive noises used for filtering are given as follows:

o;=(fxAd,),

L

o, =(0.5),
Uvz(xxf =50°
if z,y; <4000 o2 =502
@ ’ Ui
2 a2
oy, =100%, a7
2 Z(z)i \2
Trani =30 000
Z .
otherwise, | oy =(rx50x 4E)Z())’(l))2
> o 2 2
Gv(z),f —(7X100X4000) s

where f is the parameter for adjusting levels of a
variance in terms of a translation Ad, in the robot

control.

The proposed method is -compared with the
FastSLAM 2.0 algorithm using simultaneous
observations proposed by [24]. In the comparison
experiments, the FastSLAM 2.0 uses one particle with
a single map because it can produce similar
performance to the FastSLAM 2.0 with multiple
particles in unambiguous situations [17]. For both
algorithms, the map structure is organized spatially as
a hash table instead of a k-d tree used in the
FastSLAM 2.0 because a hash table is more efficient
than a k-d tree for keeping a single map. For each
experiment run, the performance of both algorithms
was evaluated with two differing levels of variance
associated with robot control on the same sensor data:
(#=0.05 and (f=0.2). Both experiments are

evaluated with the following three performance
indicators: 1) the root mean square error (RMSE) of
the robot position, 2) the constructed map at the end
of exploration, and 3) the average computational time
at each step.

Figs. 4 and 5 show the root mean square error
(RMSE) between the ground truth position of the
robot and its estimated positions by both the proposed
method and the FastSLAM 2.0 for two experiments.
Fig. 4(a) indicates an estimated position error when
(f =0.05) while Fig. 4(b) demonstrates an estimated

position error when (B =0.2). For the proposed

method, the robot position error is clearly bounded
and does not diverge in both experiments. Although
both algorithms can estimate the robot pose accurately
when odometric noise is low, the FastSLAM 2.0 may

fail catastrophically with a high odometric error. In
experiment 2, the maximum error of the proposed
method was about 22cm as shown in Fig. 5(b), but
that of the FastSLAM 2.0 was 70 cm. Moreover, the
proposed method shows better performance than the
FastSLAM 2.0 for all four cases. These results prove
that the proposed method is more robust against errors
on variances. Although the variance parameter is a
kind of gain which should be adjusted in the
performance tuning process, it is not easy to tune the
noise parameters suitably in various experiments.
Thus, robustness to a variance error can be an
advantage of an algorithm.

Both algorithms have better performance in the first
experimental setting because SLAM was performed
there with a shorter sampling time than that of the
second experimental setting. The longer sampling
time is, the larger the robot pose error estimated only
with an odometer becomes. Generally, a correctly
matched rate between landmarks and observations is
smaller in the longer sampling time than the shorter
one. This reduced number of valid observations may
make filtering performance worse. It should be noted
that there were mismatched observations in our
experiments but not completely mismatched ones
because the SIFT is a local feature. In spitz of such
false observations, the proposed method can estimate
the robot position without diverging robot position
error because the false ones are relatively a small
population compared to the correct ones. Moreover,
the mismatched landmarks don’t affect the others
because all landmarks are independently and
individually updated in the proposed method. If a
certain landmark within the field of view is not
observed more than the predefined number, it is
removed from a map.

Figs. 6 and 7 illustrate the maps generated by both
algorithms at the end of exploration of the second
experimental place with a quadrangle shape. 3D SIFT
landmarks are designated by black points and
estimated robot trajectories are drawn with red lines.
All maps are not post-processed to remove noise. Fig.
6 shows the maps constructed by the FastSLAM 2.0
while Fig. 7 depicts the maps built by the proposed
method. The map generated by the FastSLAM 2.0 for
a large odometric error, as shown in Fig. 6(b), has
large distortions, and is difficult to use for navigation.
More than 14000 and 20000 landmarks were built in
the first and the second experiments, respectively.

Table 2 shows the average computation time for
each step in experiment 2 of the high odometric error.
The computation time is measured on a 3.0 GHz
Pentium IV computer with 1GBytes RAM. The
matched observations are the average number of
simultaneous observations matched to landmarks in a
map at each frame. The landmark processing time
represents average computing time for extracting and
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-
N
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T
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T

Root Mean Square Error {mm)

FastSLAM 2.0 Proposed method
(a) Low odometric error (4 = 0.05).

Root Mean Square Error {(mm)

FastSLAM 2.0 Proposed method
(b) High odometric error (£ =0.2).

Fig. 4. Experiment 1: Estimation error of the Fast-
SLAM 2.0 and the proposed method with
varying levels of odometric noise.

matching of the SIFT features at each frame. The
landmark initialization and filtering time indicate
average computing time for the sum of initialization
time for new landmarks and filtering time with
matched observations at each step. The filtering time
per observation means computing time for integrating
a matched observation in a state update. In this
experiment, both the FastSLAM 2.0 and the proposed
method take similar computation time for extracting
and matching of the SIFT features while the proposed
method takes about twice as long for filtering. As seen
in Table II, the filtering time of the proposed method
is small enough so that the method can be used as a
real-time SLAM algorithm if feature processing time
is reduced by either optimizing the SIFT or using
other features that can be extracted efficiently.

5. CONCLUSIONS

This paper has presented an efficient SLAM
method with a large number of simultaneous
observations. The proposed method estimates the

th -] -l
(=] [~3 i~
=3 [=] o
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-
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(a) Low odometry error (£ =0.05).
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FastSLAM 2.0 Proposed method
(b) High odometry error (f =0.2).

Fig. 5. Experiment 2: Estimation error of the Fast-
SLAM 2.0 and the proposed method with
varying levels of odometric noise.

robot pose with a recursive unscented Kalman filter.
The estimated robot pose is utilized to update
landmark locations. The reduction in the filtering
dimensionality enables the SLAM method to be
performed in real-time, even though there are
enormous landmarks in a map. The proposed method
is evaluated with the two experiments in terms of
efficiency and localization accuracy. For 3D land-
marks, 14000 SIFT features and 20000 SIFT features
have been extracted and estimated for the two
experiments. The experiments produce robust results
against the erroneous levels of noise. Also, the results
prove that it is possible to build an accurate map
without keeping the correlation between landmarks.

For future research, more efficient and robust
features will be developed to reduce computing time
because most of the computing time is consumed by
the feature extraction and matching.

APPENDIX A
Equation (6) can be derived directly from (5).
Using Bayes rule and the definition of conditional
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Fig. 6. Constructed maps with the FastSLAM 2.0 at
the end of exploration of the second
experimental place.

probability, (5) can be rewritten as the following
equations:

Ip(x,,le" 12,2 ') aMr

= [P, M 2,25, 2"7 "y dMr
(Bayes rule)

p(zl’zf’; lx[;McclnaB)

=7 . am;r (18)
Xp(xt7Mcln IB)

p(zlazglxpmang;,B) ¢
:77 N dMC]n
Xp(xt5mc15MCZ |B)

(Conditional probability definition)

ﬁ p(21 IZ;,)C,,C,B)p(X, |C,B) c
aM’r
xp(me, |M§;’,B)><D

g

A2k

B4 o - 1
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(a) Low odometric error.
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Fig. 7. Constructed maps with the proposed method
at the end of exploration of the second
experimental place.

Table 2. Computation time for each step in the ex-
periment 2 (high odometric error).

FastSLAM Proposed
2.0 method
Matched 77.65 119.55
observations
Landmark 682 ms 689 ms
processing time
Landmark
initialization & 17 ms 42 ms
Filtering time
Filtering t11pe 0.112 ms 0.239 ms
per observation

where B=Z’-1,ut,C=m

- Mg;’,Zt =z ={z},e52,},
and D= p(z5 |xt,mcl,M§;',B)p(MCC;’ | B). Here, Mjl

={m, ,...,m, } represent a set of observed landmarks
1 n
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at time f while 7 means a normalizing constant.
Assuming that all landmarks are independent with the

previous states, p(MZ’ |BY of D in (18) can be

rewritten as the following equation:
cn
p(M | B)

=p(m02 |B)p(MCc3n | B) (19)

= p(m,, | B)p(m,, | B)--p(m,, | B).

The last equation of (18) can be simplified by
assuming that z is associated with x, and m,

whereas x,, m,, and M are independent.

)’
p(z | x,,m ) p(x, | B)
7 CTATEE ayen, (20)
xp(m,, | B)x D 4
Here, (20) is represented as two integrals:
cl’l
jUE] dmcleD Mz, @1
where  Ey = p(z | x.m ) p(x, | B)p(mg | B) =L p

(x;,m, |z,B) and 1 is anormalizing constant.
Also, (21) is rewritten by noting that the multiple

observations at time 7, z' ={z,...,z,} are generally
independent.

[IEI dmy, ]p(zg | xt,MCc;7 ,B)

amr.  (22)
xp(M" | B)

Now, p(x,|z,B) is calculated by marginalizing £,

with respect to the landmark location, m,, .

p(x; | z1,B)= ".771E1 dm,,

(23)
= Ip(xt’mcl |ZlﬁB) dmcl'

Assuming that z{ ={z,..,z,} are generally
independent, p(z§’|xt,M§;,B) of (22) can be

rewritten as:
plzy 1%, M, B)p(25 | 5. M), B). 24)

Here, (24) is simplified by noting that z, is associated

with x, and m,, whereas z3 is associated with

C,
x, and M".
<

Pz |x,,m02 (% |xt=Mcc3naB)' (25)
Using (23) and (25), (22) is rewritten as:

[ JE> dme, |p(E 1% M)

M, (26)
xp(M | B)

where By = p(z; | X me) ) p(x; | 21, B) p(me, | B) =
p(x;,me, |le ,B) and 7, isanormalizing constant.

Also, p(x, | zlz,B) can be calculated by marginalizing

E, with respect to the landmark location, m,, .

p(x |2, B) = IﬂzEz dme,

5 27)
= Jp(xtamcz |z, B) dmcz'

In the same manner, p(x, |z{,B) is obtained from
calculating (28).

p(x; |2 B) = [1,E, dm,,

(28)
= Ip(x,,mcn |z(',B) dm, ,

where  E, = p(z, | x,m. )p(x, |2/, B)p(m, |B)=
ﬂi p(x,,m, |z',B) and 7, is a normalizing constant.

Equation (28) is equivalent to the marginal or
posterior probability distribution of the robot pose
represented by the last equation of (6).

APPENDIX B
Using Bayes rule, the last equation of (7) is
rewritten as:

J-p(xt,mci |Zt,ZH,u[) dx;

pz; | xmg 27 u') (29)

dx;,,

=7 P
Xp(xtamci I t> 9u )

where Z; =Z, —z;. 1n; isanormalizing constant.
Assuming that the state, composed of the robot

pose x, and all landmark locations M ={M§1”,

M"Y, is independent with the previous states, and
that the observation z; is associated with x, and M,
(29) is simplified as:

! -1
p(zi |xt’mci)p(xt |Zt>Zt ’ut)

, dx,.  (30)
xp(me, 1 Z,2'" ')

n;
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Equation (30) can be rewritten as the following
equation because the robot control u, doesn’t

provide new information about m, without the
latest observation z;, and the other latest observations

Z, don’tobserve m :

! ~1
p(z; |x,,mcl_ )p(x, |Zstt ,ut)
7 dx;.

€2y
xp(m, |27 u'™)

Heré, (31) is equivalent to the last equation of (8).
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