• Title/Summary/Keyword: recursive system

Search Result 595, Processing Time 0.029 seconds

Time delay estimation by iterative Wiener filter based recursive total least squares algorithm (반복형 위너 필터 방법에 기반한 재귀적 완전 최소 제곱 방법을 사용한 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.452-459
    • /
    • 2021
  • Estimating the mutual time delay between two acoustic sensors is used in various fields such as tracking and estimating the location of a target in room acoustics and sonar. In the time delay estimation methods, there are a non-parametric method, such as Generalized Cross Correlation (GCC), and a parametric method based on system identification. In this paper, we propose a time delay estimation method based on the parametric method. In particular, we propose a method that considers the noise in each receiving acoustic sensor. Simulation confirms that the proposed algorithm is superior to the existing generalized cross-correlation and adaptive eigenvalue analysis methods in white noise and reverberation environments.

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Reproduction of Long-term Memory in hydroclimatological variables using Deep Learning Model

  • Lee, Taesam;Tran, Trang Thi Kieu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.101-101
    • /
    • 2020
  • Traditional stochastic simulation of hydroclimatological variables often underestimates the variability and correlation structure of larger timescale due to the difficulty in preserving long-term memory. However, the Long Short-Term Memory (LSTM) model illustrates a remarkable long-term memory from the recursive hidden and cell states. The current study, therefore, employed the LSTM model in stochastic generation of hydrologic and climate variables to examine how much the LSTM model can preserve the long-term memory and overcome the drawbacks of conventional time series models such as autoregressive (AR). A trigonometric function and the Rössler system as well as real case studies for hydrological and climatological variables were tested. Results presented that the LSTM model reproduced the variability and correlation structure of the larger timescale as well as the key statistics of the original time domain better than the AR and other traditional models. The hidden and cell states of the LSTM containing the long-memory and oscillation structure following the observations allows better performance compared to the other tested conventional models. This good representation of the long-term variability can be important in water manager since future water resources planning and management is highly related with this long-term variability.

  • PDF

Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem (순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색)

  • 홍석미;이영아;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.862-866
    • /
    • 2003
  • Traveling Salesman Problem(TSP) is a combinational optimization problem, Genetic Algorithm(GA) and Lin-Kernighan(LK) Heuristic[1]that is Local Search Heuristic are one of the most commonly used methods to resolve TSP. In this paper, we introduce ACS(Ant Colony System) Algorithm as another approach to solve TSP and propose a new pheromone updating method. ACS uses pheromone information between cities in the Process where many ants make a tour, and is a method to find a optimal solution through recursive tour creation process. At the stage of Global Updating of ACS method, it updates pheromone of edges belonging to global best tour of created all edge. But we perform once more pheromone update about created all edges before global updating rule of original ACS is applied. At this process, we use the frequency of occurrence of each edges to update pheromone. We could offer stochastic value by pheromone about each edges, giving all edges' occurrence frequency as weight about Pheromone. This finds an optimal solution faster than existing ACS algorithm and prevent a local optima using more edges in next time search.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

Neural Theorem Prover with Word Embedding for Efficient Automatic Annotation (효율적인 자동 주석을 위한 단어 임베딩 인공 신경 정리 증명계 구축)

  • Yang, Wonsuk;Park, Hancheol;Park, Jong C.
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.399-410
    • /
    • 2017
  • We present a system that automatically annotates unverified Web sentences with information from credible sources. The system turns to neural theorem proving for an annotating task for cancer related Wikipedia data (1,486 propositions) with Korean National Cancer Center data (19,304 propositions). By switching the recursive module in a neural theorem prover to a word embedding module, we overcome the fundamental problem of tremendous learning time. Within the identical environment, the original neural theorem prover was estimated to spend 233.9 days of learning time. In contrast, the revised neural theorem prover took only 102.1 minutes of learning time. We demonstrated that a neural theorem prover, which encodes a proposition in a tensor, includes a classic theorem prover for exact match and enables end-to-end differentiable logic for analogous words.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

A Novel Measure for Retrieval Efficiency of Image Database Retrieval System (영상 데이터베이스 검색 시스템의 검색효율 평가를 위한 새로운 평가척도)

  • 서창덕;김회율
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.68-81
    • /
    • 2000
  • This paper proposes a single metric to measure and evaluate the retrieval effectiveness of image database retrieval system that requires an ordered ranking. There are four conditions to be a good ranking system. First, the number of relevant images among the retrieved should be as large as possible. Secondly, the number of irrelevant images should be smaller. Third, the average rank of relevant images should be higher. Last, the relevant images should be clustered close together. The conventional evaluation measures only reflect a part of the conditions listed above, and the evaluated results are coarse or inaccurate. The proposed NDS, however, resolves all those problems. In order to prove the efficiency of the NDS, we generate patterns of ${\_nC_r(_10C_5=252, _20C_9=167,960)}$ to evaluate and compare with other measures. The patterns were generated automatically by a recursive function call on the assumption the 'r' relevant images are retrieved within the range of 'n'.

  • PDF

A Study on the Development of Prediction Method of Ozone Formation for Ozone Forecast System (오존예보시스템을 위한 오존 발생량의 예측기법 개발에 관한 연구)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • To verify the performance and effectiveness of bilinear model for the development of ozone prediction system, the simulation experiments of the model identification for ozone formation were performed by using bilinear and linear models. And the prediction results of the ozone formation by bilinear model were compared to those of linear model and the measured data of Seoul. ARMA(Autoregressive Moving Average) model was used in the model identification. A recursive parameter estimation algorithm based on an equation error method was used to estimate parameters of model. From the results of model identification experiment, the ozone formation by bilinear model showed good agreement with the ozone formation from the simulator. From the comparison of the prediction results and the measured data, it appears that the method proposed in this work is a reasonable means of developing real-time short-term prediction of ozone formation for an ozone forecast system.

  • PDF

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.